Abstract:Incorporating Knowledge Graphs into Recommendation has attracted growing attention in industry, due to the great potential of KG in providing abundant supplementary information and interpretability for the underlying models. However, simply integrating KG into recommendation usually brings in negative feedback in industry, due to the ignorance of the following two factors: i) users' multiple intents, which involve diverse nodes in KG. For example, in e-commerce scenarios, users may exhibit preferences for specific styles, brands, or colors. ii) knowledge noise, which is a prevalent issue in Knowledge Enhanced Recommendation (KGR) and even more severe in industry scenarios. The irrelevant knowledge properties of items may result in inferior model performance compared to approaches that do not incorporate knowledge. To tackle these challenges, we propose a novel approach named Knowledge Enhanced Multi-intent Transformer Network for Recommendation (KGTN), comprising two primary modules: Global Intents Modeling with Graph Transformer, and Knowledge Contrastive Denoising under Intents. Specifically, Global Intents with Graph Transformer focuses on capturing learnable user intents, by incorporating global signals from user-item-relation-entity interactions with a graph transformer, meanwhile learning intent-aware user/item representations. Knowledge Contrastive Denoising under Intents is dedicated to learning precise and robust representations. It leverages intent-aware representations to sample relevant knowledge, and proposes a local-global contrastive mechanism to enhance noise-irrelevant representation learning. Extensive experiments conducted on benchmark datasets show the superior performance of our proposed method over the state-of-the-arts. And online A/B testing results on Alibaba large-scale industrial recommendation platform also indicate the real-scenario effectiveness of KGTN.
Abstract:Image-based Virtual Try-On (VITON) aims to transfer an in-shop garment image onto a target person. While existing methods focus on warping the garment to fit the body pose, they often overlook the synthesis quality around the garment-skin boundary and realistic effects like wrinkles and shadows on the warped garments. These limitations greatly reduce the realism of the generated results and hinder the practical application of VITON techniques. Leveraging the notable success of diffusion-based models in cross-modal image synthesis, some recent diffusion-based methods have ventured to tackle this issue. However, they tend to either consume a significant amount of training resources or struggle to achieve realistic try-on effects and retain garment details. For efficient and high-fidelity VITON, we propose WarpDiffusion, which bridges the warping-based and diffusion-based paradigms via a novel informative and local garment feature attention mechanism. Specifically, WarpDiffusion incorporates local texture attention to reduce resource consumption and uses a novel auto-mask module that effectively retains only the critical areas of the warped garment while disregarding unrealistic or erroneous portions. Notably, WarpDiffusion can be integrated as a plug-and-play component into existing VITON methodologies, elevating their synthesis quality. Extensive experiments on high-resolution VITON benchmarks and an in-the-wild test set demonstrate the superiority of WarpDiffusion, surpassing state-of-the-art methods both qualitatively and quantitatively.
Abstract:Cryptocurrency has been subject to illicit activities probably more often than traditional financial assets due to the pseudo-anonymous nature of its transacting entities. An ideal detection model is expected to achieve all three critical properties of (I) early detection, (II) good interpretability, and (III) versatility for various illicit activities. However, existing solutions cannot meet all these requirements, as most of them heavily rely on deep learning without interpretability and are only available for retrospective analysis of a specific illicit type. To tackle all these challenges, we propose Intention-Monitor for early malice detection in Bitcoin (BTC), where the on-chain record data for a certain address are much scarcer than other cryptocurrency platforms. We first define asset transfer paths with the Decision-Tree based feature Selection and Complement (DT-SC) to build different feature sets for different malice types. Then, the Status/Action Proposal Module (S/A-PM) and the Intention-VAE module generate the status, action, intent-snippet, and hidden intent-snippet embedding. With all these modules, our model is highly interpretable and can detect various illegal activities. Moreover, well-designed loss functions further enhance the prediction speed and model's interpretability. Extensive experiments on three real-world datasets demonstrate that our proposed algorithm outperforms the state-of-the-art methods. Furthermore, additional case studies justify our model can not only explain existing illicit patterns but can also find new suspicious characters.
Abstract:Creating expressive, diverse and high-quality 3D avatars from highly customized text descriptions and pose guidance is a challenging task, due to the intricacy of modeling and texturing in 3D that ensure details and various styles (realistic, fictional, etc). We present AvatarVerse, a stable pipeline for generating expressive high-quality 3D avatars from nothing but text descriptions and pose guidance. In specific, we introduce a 2D diffusion model conditioned on DensePose signal to establish 3D pose control of avatars through 2D images, which enhances view consistency from partially observed scenarios. It addresses the infamous Janus Problem and significantly stablizes the generation process. Moreover, we propose a progressive high-resolution 3D synthesis strategy, which obtains substantial improvement over the quality of the created 3D avatars. To this end, the proposed AvatarVerse pipeline achieves zero-shot 3D modeling of 3D avatars that are not only more expressive, but also in higher quality and fidelity than previous works. Rigorous qualitative evaluations and user studies showcase AvatarVerse's superiority in synthesizing high-fidelity 3D avatars, leading to a new standard in high-quality and stable 3D avatar creation. Our project page is: https://avatarverse3d.github.io
Abstract:With an enormous number of hand images generated over time, unleashing pose knowledge from unlabeled images for supervised hand mesh estimation is an emerging yet challenging topic. To alleviate this issue, semi-supervised and self-supervised approaches have been proposed, but they are limited by the reliance on detection models or conventional ResNet backbones. In this paper, inspired by the rapid progress of Masked Image Modeling (MIM) in visual classification tasks, we propose a novel self-supervised pre-training strategy for regressing 3D hand mesh parameters. Our approach involves a unified and multi-granularity strategy that includes a pseudo keypoint alignment module in the teacher-student framework for learning pose-aware semantic class tokens. For patch tokens with detailed locality, we adopt a self-distillation manner between teacher and student network based on MIM pre-training. To better fit low-level regression tasks, we incorporate pixel reconstruction tasks for multi-level representation learning. Additionally, we design a strong pose estimation baseline using a simple vanilla vision Transformer (ViT) as the backbone and attach a PyMAF head after tokens for regression. Extensive experiments demonstrate that our proposed approach, named HandMIM, achieves strong performance on various hand mesh estimation tasks. Notably, HandMIM outperforms specially optimized architectures, achieving 6.29mm and 8.00mm PAVPE (Vertex-Point-Error) on challenging FreiHAND and HO3Dv2 test sets, respectively, establishing new state-of-the-art records on 3D hand mesh estimation.
Abstract:Conversational recommendation systems (CRS) aim to interactively acquire user preferences and accordingly recommend items to users. Accurately learning the dynamic user preferences is of crucial importance for CRS. Previous works learn the user preferences with pairwise relations from the interactive conversation and item knowledge, while largely ignoring the fact that factors for a relationship in CRS are multiplex. Specifically, the user likes/dislikes the items that satisfy some attributes (Like/Dislike view). Moreover social influence is another important factor that affects user preference towards the item (Social view), while is largely ignored by previous works in CRS. The user preferences from these three views are inherently different but also correlated as a whole. The user preferences from the same views should be more similar than that from different views. The user preferences from Like View should be similar to Social View while different from Dislike View. To this end, we propose a novel model, namely Multi-view Hypergraph Contrastive Policy Learning (MHCPL). Specifically, MHCPL timely chooses useful social information according to the interactive history and builds a dynamic hypergraph with three types of multiplex relations from different views. The multiplex relations in each view are successively connected according to their generation order.
Abstract:Existing methods proposed for hand reconstruction tasks usually parameterize a generic 3D hand model or predict hand mesh positions directly. The parametric representations consisting of hand shapes and rotational poses are more stable, while the non-parametric methods can predict more accurate mesh positions. In this paper, we propose to reconstruct meshes and estimate MANO parameters of two hands from a single RGB image simultaneously to utilize the merits of two kinds of hand representations. To fulfill this target, we propose novel Mesh-Mano interaction blocks (MMIBs), which take mesh vertices positions and MANO parameters as two kinds of query tokens. MMIB consists of one graph residual block to aggregate local information and two transformer encoders to model long-range dependencies. The transformer encoders are equipped with different asymmetric attention masks to model the intra-hand and inter-hand attention, respectively. Moreover, we introduce the mesh alignment refinement module to further enhance the mesh-image alignment. Extensive experiments on the InterHand2.6M benchmark demonstrate promising results over the state-of-the-art hand reconstruction methods.
Abstract:Image-based Virtual Try-ON aims to transfer an in-shop garment onto a specific person. Existing methods employ a global warping module to model the anisotropic deformation for different garment parts, which fails to preserve the semantic information of different parts when receiving challenging inputs (e.g, intricate human poses, difficult garments). Moreover, most of them directly warp the input garment to align with the boundary of the preserved region, which usually requires texture squeezing to meet the boundary shape constraint and thus leads to texture distortion. The above inferior performance hinders existing methods from real-world applications. To address these problems and take a step towards real-world virtual try-on, we propose a General-Purpose Virtual Try-ON framework, named GP-VTON, by developing an innovative Local-Flow Global-Parsing (LFGP) warping module and a Dynamic Gradient Truncation (DGT) training strategy. Specifically, compared with the previous global warping mechanism, LFGP employs local flows to warp garments parts individually, and assembles the local warped results via the global garment parsing, resulting in reasonable warped parts and a semantic-correct intact garment even with challenging inputs.On the other hand, our DGT training strategy dynamically truncates the gradient in the overlap area and the warped garment is no more required to meet the boundary constraint, which effectively avoids the texture squeezing problem. Furthermore, our GP-VTON can be easily extended to multi-category scenario and jointly trained by using data from different garment categories. Extensive experiments on two high-resolution benchmarks demonstrate our superiority over the existing state-of-the-art methods.
Abstract:With the ever-increasing boom of Cryptocurrency, detecting fraudulent behaviors and associated malicious addresses draws significant research effort. However, most existing studies still rely on the full history features or full-fledged address transaction networks, thus cannot meet the requirements of early malicious address detection, which is urgent but seldom discussed by existing studies. To detect fraud behaviors of malicious addresses in the early stage, we present Evolve Path Tracer, which consists of Evolve Path Encoder LSTM, Evolve Path Graph GCN, and Hierarchical Survival Predictor. Specifically, in addition to the general address features, we propose asset transfer paths and corresponding path graphs to characterize early transaction patterns. Further, since the transaction patterns are changing rapidly during the early stage, we propose Evolve Path Encoder LSTM and Evolve Path Graph GCN to encode asset transfer path and path graph under an evolving structure setting. Hierarchical Survival Predictor then predicts addresses' labels with nice scalability and faster prediction speed. We investigate the effectiveness and versatility of Evolve Path Tracer on three real-world illicit bitcoin datasets. Our experimental results demonstrate that Evolve Path Tracer outperforms the state-of-the-art methods. Extensive scalability experiments demonstrate the model's adaptivity under a dynamic prediction setting.
Abstract:Bitcoin has been subject to illicit activities more often than probably any other financial assets, due to the pseudo-anonymous nature of its transacting entities. An ideal detection model is expected to achieve all the three properties of (I) early detection, (II) good interpretability, and (III) versatility for various illicit activities. However, existing solutions cannot meet all these requirements, as most of them heavily rely on deep learning without satisfying interpretability and are only available for retrospective analysis of a specific illicit type. First, we present asset transfer paths, which aim to describe addresses' early characteristics. Next, with a decision tree based strategy for feature selection and segmentation, we split the entire observation period into different segments and encode each as a segment vector. After clustering all these segment vectors, we get the global status vectors, essentially the basic unit to describe the whole intention. Finally, a hierarchical self-attention predictor predicts the label for the given address in real time. A survival module tells the predictor when to stop and proposes the status sequence, namely intention. % With the type-dependent selection strategy and global status vectors, our model can be applied to detect various illicit activities with strong interpretability. The well-designed predictor and particular loss functions strengthen the model's prediction speed and interpretability one step further. Extensive experiments on three real-world datasets show that our proposed algorithm outperforms state-of-the-art methods. Besides, additional case studies justify our model can not only explain existing illicit patterns but can also find new suspicious characters.