Abstract:Sequential scaling is a prominent inference-time scaling paradigm, yet its performance improvements are typically modest and not well understood, largely due to the prevalence of heuristic, non-principled approaches that obscure clear optimality bounds. To address this, we propose a principled framework that models sequential scaling as a two-state Markov process. This approach reveals the underlying properties of sequential scaling and yields closed-form solutions for essential aspects, such as the specific conditions under which accuracy is improved and the theoretical upper, neutral, and lower performance bounds. Leveraging this formulation, we develop MarkovScale, a practical system that applies these optimality criteria to achieve a theoretically grounded balance between accuracy and efficiency. Comprehensive experiments across 3 backbone LLMs, 5 benchmarks, and over 20 configurations show that MarkovScale consistently outperforms state-of-the-art parallel and sequential scaling methods, representing a significant step toward optimal and resource-efficient inference in LLMs. The source code will be open upon acceptance at https://open-upon-acceptance.
Abstract:Multimodal MRI is essential for brain tumor segmentation, yet missing modalities in clinical practice cause existing methods to exhibit >40% performance variance across modality combinations, rendering them clinically unreliable. We propose AMGFormer, achieving significantly improved stability through three synergistic modules: (1) QuadIntegrator Bridge (QIB) enabling spatially adaptive fusion maintaining consistent predictions regardless of available modalities, (2) Multi-Granular Attention Orchestrator (MGAO) focusing on pathological regions to reduce background sensitivity, and (3) Modality Quality-Aware Enhancement (MQAE) preventing error propagation from corrupted sequences. On BraTS 2018, our method achieves 89.33% WT, 82.70% TC, 67.23% ET Dice scores with <0.5% variance across 15 modality combinations, solving the stability crisis. Single-modality ET segmentation shows 40-81% relative improvements over state-of-the-art methods. The method generalizes to BraTS 2020/2021, achieving up to 92.44% WT, 89.91% TC, 84.57% ET. The model demonstrates potential for clinical deployment with 1.2s inference. Code: https://github.com/guochengxiangives/AMGFormer.
Abstract:Vision-Language Models (VLMs) enable powerful multi-agent systems, but scaling them is economically unsustainable: coordinating heterogeneous agents under information asymmetry often spirals costs. Existing paradigms, such as Mixture-of-Agents and knowledge-based routers, rely on heuristic proxies that ignore costs and collapse uncertainty structure, leading to provably suboptimal coordination. We introduce Agora, a framework that reframes coordination as a decentralized market for uncertainty. Agora formalizes epistemic uncertainty into a structured, tradable asset (perceptual, semantic, inferential), and enforces profitability-driven trading among agents based on rational economic rules. A market-aware broker, extending Thompson Sampling, initiates collaboration and guides the system toward cost-efficient equilibria. Experiments on five multimodal benchmarks (MMMU, MMBench, MathVision, InfoVQA, CC-OCR) show that Agora outperforms strong VLMs and heuristic multi-agent strategies, e.g., achieving +8.5% accuracy over the best baseline on MMMU while reducing cost by over 3x. These results establish market-based coordination as a principled and scalable paradigm for building economically viable multi-agent visual intelligence systems.
Abstract:Generative Recommendation (GR) has emerged as a transformative paradigm with its end-to-end generation advantages. However, existing GR methods primarily focus on direct Semantic ID (SID) generation from interaction sequences, failing to activate deeper reasoning capabilities analogous to those in large language models and thus limiting performance potential. We identify two critical limitations in current reasoning-enhanced GR approaches: (1) Strict sequential separation between reasoning and generation steps creates imbalanced computational focus across hierarchical SID codes, degrading quality for SID codes; (2) Generated reasoning vectors lack interpretable semantics, while reasoning paths suffer from unverifiable supervision. In this paper, we propose stepwise semantic-guided reasoning in latent space (S$^2$GR), a novel reasoning enhanced GR framework. First, we establish a robust semantic foundation via codebook optimization, integrating item co-occurrence relationship to capture behavioral patterns, and load balancing and uniformity objectives that maximize codebook utilization while reinforcing coarse-to-fine semantic hierarchies. Our core innovation introduces the stepwise reasoning mechanism inserting thinking tokens before each SID generation step, where each token explicitly represents coarse-grained semantics supervised via contrastive learning against ground-truth codebook cluster distributions ensuring physically grounded reasoning paths and balanced computational focus across all SID codes. Extensive experiments demonstrate the superiority of S$^2$GR, and online A/B test confirms efficacy on large-scale industrial short video platform.
Abstract:Large reasoning models (LRMs) have achieved remarkable success in complex problem-solving, yet they often suffer from computational redundancy or reasoning unfaithfulness. Current methods for shaping LRM behavior typically rely on reinforcement learning or fine-tuning with gold-standard reasoning traces, a paradigm that is both computationally expensive and difficult to scale. In this paper, we reveal that LRMs possess latent \textit{reasoning beliefs} that internally track their own reasoning traits, which can be captured through simple logit probing. Building upon this insight, we propose Reasoning Belief Engineering (RELIEF), a simple yet effective framework that shapes LRM behavior by aligning the model's self-concept with a target belief blueprint. Crucially, RELIEF completely bypasses the need for reasoning-trace supervision. It internalizes desired traits by fine-tuning on synthesized, self-reflective question-answering pairs that affirm the target belief. Extensive experiments on efficiency and faithfulness tasks demonstrate that RELIEF matches or outperforms behavior-supervised and preference-based baselines while requiring lower training costs. Further analysis validates that shifting a model's reasoning belief effectively shapes its actual behavior.
Abstract:Tool learning is increasingly important for large language models (LLMs) to effectively coordinate and utilize a diverse set of tools in order to solve complex real-world tasks. By selecting and integrating appropriate tools, LLMs extend their capabilities beyond pure language understanding to perform specialized functions. However, existing methods for tool selection often focus on limited tool sets and struggle to generalize to novel tools encountered in practical deployments. To address these challenges, we introduce a comprehensive dataset spanning 7 domains, containing 155 tools and 9,377 question-answer pairs, which simulates realistic integration scenarios. Additionally, we propose MetaToolAgent (MTA), a meta-learning approach designed to improve cross-tool generalization. Experimental results show that MTA significantly outperforms baseline methods on unseen tools, demonstrating its promise for building flexible and scalable systems that require dynamic tool coordination.
Abstract:Current context augmentation methods, such as retrieval-augmented generation, are essential for solving knowledge-intensive reasoning tasks.However, they typically adhere to a rigid, brute-force strategy that executes retrieval at every step. This indiscriminate approach not only incurs unnecessary computational costs but also degrades performance by saturating the context with irrelevant noise. To address these limitations, we introduce Agentic Context Evolution (ACE), a framework inspired by human metacognition that dynamically determines whether to seek new evidence or reason with existing knowledge. ACE employs a central orchestrator agent to make decisions strategically via majority voting.It aims to alternate between activating a retriever agent for external retrieval and a reasoner agent for internal analysis and refinement. By eliminating redundant retrieval steps, ACE maintains a concise and evolved context. Extensive experiments on challenging multi-hop QA benchmarks demonstrate that ACE significantly outperforms competitive baselines in accuracy while achieving efficient token consumption.Our work provides valuable insights into advancing context-evolved generation for complex, knowledge-intensive tasks.
Abstract:Recent advances in world models have shown promise for modeling future dynamics of environmental states, enabling agents to reason and act without accessing real environments. Current methods mainly perform single-step or fixed-horizon rollouts, leaving their potential for complex task planning under-exploited. We propose Imagine-then-Plan (\texttt{ITP}), a unified framework for agent learning via lookahead imagination, where an agent's policy model interacts with the learned world model, yielding multi-step ``imagined'' trajectories. Since the imagination horizon may vary by tasks and stages, we introduce a novel adaptive lookahead mechanism by trading off the ultimate goal and task progress. The resulting imagined trajectories provide rich signals about future consequences, such as achieved progress and potential conflicts, which are fused with current observations, formulating a partially \textit{observable} and \textit{imaginable} Markov decision process to guide policy learning. We instantiate \texttt{ITP} with both training-free and reinforcement-trained variants. Extensive experiments across representative agent benchmarks demonstrate that \texttt{ITP} significantly outperforms competitive baselines. Further analyses validate that our adaptive lookahead largely enhances agents' reasoning capability, providing valuable insights into addressing broader, complex tasks.
Abstract:Recent advances in medical multi-modal models focus on specialized image analysis like dermatology, pathology, or radiology. However, they do not fully capture the complexity of real-world clinical diagnostics, which involve heterogeneous inputs and require ongoing contextual understanding during patient-physician interactions. To bridge this gap, we introduce PulseMind, a new family of multi-modal diagnostic models that integrates a systematically curated dataset, a comprehensive evaluation benchmark, and a tailored training framework. Specifically, we first construct a diagnostic dataset, MediScope, which comprises 98,000 real-world multi-turn consultations and 601,500 medical images, spanning over 10 major clinical departments and more than 200 sub-specialties. Then, to better reflect the requirements of real-world clinical diagnosis, we develop the PulseMind Benchmark, a multi-turn diagnostic consultation benchmark with a four-dimensional evaluation protocol comprising proactiveness, accuracy, usefulness, and language quality. Finally, we design a training framework tailored for multi-modal clinical diagnostics, centered around a core component named Comparison-based Reinforcement Policy Optimization (CRPO). Compared to absolute score rewards, CRPO uses relative preference signals from multi-dimensional com-parisons to provide stable and human-aligned training guidance. Extensive experiments demonstrate that PulseMind achieves competitive performance on both the diagnostic consultation benchmark and public medical benchmarks.
Abstract:We discover a previously overlooked challenge in personalized text generation: personalization methods are increasingly applied under explicit style instructions, yet their behavior under such constraints remains poorly understood. To balance implicit personalization and explicit style, we formulate personalization as a distributional residual and propose PsPLUG, a lightweight soft-prompt plug-in trained with style-conditioned preference contrasts. Across LaMP benchmark, our framework improves persona alignment, maintains stylistic fidelity, and outperforms retrieval-based and soft-prompt baselines with minimal computation. These results show that residual modeling provides a simple and principled foundation for controllable, style-aware LLM personalization.