Abstract:This paper addresses the need for improved precision in existing Retrieval-Augmented Generation (RAG) methods that primarily focus on enhancing recall. We propose a multi-layer knowledge pyramid approach within the RAG framework to achieve a better balance between precision and recall. The knowledge pyramid consists of three layers: Ontologies, Knowledge Graphs (KGs), and chunk-based raw text. We employ cross-layer augmentation techniques for comprehensive knowledge coverage and dynamic updates of the Ontology schema and instances. To ensure compactness, we utilize cross-layer filtering methods for knowledge condensation in KGs. Our approach, named PolyRAG, follows a waterfall model for retrieval, starting from the top of the pyramid and progressing down until a confident answer is obtained. We introduce two benchmarks for domain-specific knowledge retrieval, one in the academic domain and the other in the financial domain. The effectiveness of the methods has been validated through comprehensive experiments by outperforming 19 SOTA methods. An encouraging observation is that the proposed method has augmented the GPT-4, providing 395\% F1 gain by improving its performance from 0.1636 to 0.8109.
Abstract:Accurate human localization is crucial for various applications, especially in the Metaverse era. Existing high precision solutions rely on expensive, tag-dependent hardware, while vision-based methods offer a cheaper, tag-free alternative. However, current vision solutions based on stereo vision face limitations due to rigid perspective transformation principles and error propagation in multi-stage SVD solvers. These solutions also require multiple high-resolution cameras with strict setup constraints. To address these limitations, we propose a probabilistic approach that considers all points on the human body as observations generated by a distribution centered around the body's geometric center. This enables us to improve sampling significantly, increasing the number of samples for each point of interest from hundreds to billions. By modeling the relation between the means of the distributions of world coordinates and pixel coordinates, leveraging the Central Limit Theorem, we ensure normality and facilitate the learning process. Experimental results demonstrate human localization accuracy of 95% within a 0.3m range and nearly 100% accuracy within a 0.5m range, achieved at a low cost of only 10 USD using two web cameras with a resolution of 640x480 pixels.
Abstract:Recent advancements in generative models have significantly impacted content creation, leading to the emergence of Personalized Content Synthesis (PCS). With a small set of user-provided examples, PCS aims to customize the subject of interest to specific user-defined prompts. Over the past two years, more than 150 methods have been proposed. However, existing surveys mainly focus on text-to-image generation, with few providing up-to-date summaries on PCS. This paper offers a comprehensive survey of PCS, with a particular focus on the diffusion models. Specifically, we introduce the generic frameworks of PCS research, which can be broadly classified into optimization-based and learning-based approaches. We further categorize and analyze these methodologies, discussing their strengths, limitations, and key techniques. Additionally, we delve into specialized tasks within the field, such as personalized object generation, face synthesis, and style personalization, highlighting their unique challenges and innovations. Despite encouraging progress, we also present an analysis of the challenges such as overfitting and the trade-off between subject fidelity and text alignment. Through this detailed overview and analysis, we propose future directions to advance the development of PCS.
Abstract:This paper presents a pilot study that explores the application of active learning, traditionally studied in the context of discriminative models, to generative models. We specifically focus on image synthesis personalization tasks. The primary challenge in conducting active learning on generative models lies in the open-ended nature of querying, which differs from the closed form of querying in discriminative models that typically target a single concept. We introduce the concept of anchor directions to transform the querying process into a semi-open problem. We propose a direction-based uncertainty sampling strategy to enable generative active learning and tackle the exploitation-exploration dilemma. Extensive experiments are conducted to validate the effectiveness of our approach, demonstrating that an open-source model can achieve superior performance compared to closed-source models developed by large companies, such as Google's StyleDrop. The source code is available at https://github.com/zhangxulu1996/GAL4Personalization.
Abstract:This paper presents a pilot study aimed at introducing multi-agent debate into multimodal reasoning. The study addresses two key challenges: the trivialization of opinions resulting from excessive summarization and the diversion of focus caused by distractor concepts introduced from images. These challenges stem from the inductive (bottom-up) nature of existing debating schemes. To address the issue, we propose a deductive (top-down) debating approach called Blueprint Debate on Graphs (BDoG). In BDoG, debates are confined to a blueprint graph to prevent opinion trivialization through world-level summarization. Moreover, by storing evidence in branches within the graph, BDoG mitigates distractions caused by frequent but irrelevant concepts. Extensive experiments validate BDoG, achieving state-of-the-art results in Science QA and MMBench with significant improvements over previous methods.
Abstract:Tuning pretrained language models for dialogue generation has been a prevalent paradigm for building capable dialogue agents. Yet, traditional tuning narrowly views dialogue generation as resembling other language generation tasks, ignoring the role disparities between two speakers and the multi-round interactive process that dialogues ought to be. Such a manner leads to unsatisfactory chat consistency of the built agent. In this work, we emphasize the interactive, communicative nature of dialogue and argue that it is more feasible to model the speaker roles of agent and user separately, enabling the agent to adhere to its role consistently. We propose an efficient Multi-round Interactive Dialogue Tuning (Midi-Tuning) framework. It models the agent and user individually with two adapters built upon large language models, where they utilize utterances round by round in alternating order and are tuned via a round-level memory caching mechanism. Extensive experiments demonstrate that, our framework performs superior to traditional fine-tuning and harbors the tremendous potential for improving dialogue consistency.
Abstract:Inversion methods, such as Textual Inversion, generate personalized images by incorporating concepts of interest provided by user images. However, existing methods often suffer from overfitting issues, where the dominant presence of inverted concepts leads to the absence of other desired concepts. It stems from the fact that during inversion, the irrelevant semantics in the user images are also encoded, forcing the inverted concepts to occupy locations far from the core distribution in the embedding space. To address this issue, we propose a method that guides the inversion process towards the core distribution for compositional embeddings. Additionally, we introduce a spatial regularization approach to balance the attention on the concepts being composed. Our method is designed as a post-training approach and can be seamlessly integrated with other inversion methods. Experimental results demonstrate the effectiveness of our proposed approach in mitigating the overfitting problem and generating more diverse and balanced compositions of concepts in the synthesized images. The source code is available at https://github.com/zhangxulu1996/Compositional-Inversion.
Abstract:Molecule discovery plays a crucial role in various scientific fields, advancing the design of tailored materials and drugs. Traditional methods for molecule discovery follow a trial-and-error process, which are both time-consuming and costly, while computational approaches such as artificial intelligence (AI) have emerged as revolutionary tools to expedite various tasks, like molecule-caption translation. Despite the importance of molecule-caption translation for molecule discovery, most of the existing methods heavily rely on domain experts, require excessive computational cost, and suffer from poor performance. On the other hand, Large Language Models (LLMs), like ChatGPT, have shown remarkable performance in various cross-modal tasks due to their great powerful capabilities in natural language understanding, generalization, and reasoning, which provides unprecedented opportunities to advance molecule discovery. To address the above limitations, in this work, we propose a novel LLMs-based framework (\textbf{MolReGPT}) for molecule-caption translation, where a retrieval-based prompt paradigm is introduced to empower molecule discovery with LLMs like ChatGPT without fine-tuning. More specifically, MolReGPT leverages the principle of molecular similarity to retrieve similar molecules and their text descriptions from a local database to ground the generation of LLMs through in-context few-shot molecule learning. We evaluate the effectiveness of MolReGPT via molecule-caption translation, which includes molecule understanding and text-based molecule generation. Experimental results show that MolReGPT outperforms fine-tuned models like MolT5-base without any additional training. To the best of our knowledge, MolReGPT is the first work to leverage LLMs in molecule-caption translation for advancing molecule discovery.
Abstract:With the urgent demand for generalized deep models, many pre-trained big models are proposed, such as BERT, ViT, GPT, etc. Inspired by the success of these models in single domains (like computer vision and natural language processing), the multi-modal pre-trained big models have also drawn more and more attention in recent years. In this work, we give a comprehensive survey of these models and hope this paper could provide new insights and helps fresh researchers to track the most cutting-edge works. Specifically, we firstly introduce the background of multi-modal pre-training by reviewing the conventional deep learning, pre-training works in natural language process, computer vision, and speech. Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network architectures, and knowledge enhanced pre-training. After that, we introduce the downstream tasks used for the validation of large-scale MM-PTMs, including generative, classification, and regression tasks. We also give visualization and analysis of the model parameters and results on representative downstream tasks. Finally, we point out possible research directions for this topic that may benefit future works. In addition, we maintain a continuously updated paper list for large-scale pre-trained multi-modal big models: https://github.com/wangxiao5791509/MultiModal_BigModels_Survey
Abstract:Class Activation Mapping (CAM) has been widely adopted to generate saliency maps which provides visual explanations for deep neural networks (DNNs). The saliency maps are conventionally generated by fusing the channels of the target feature map using a weighted average scheme. It is a weak model for the inter-channel relation, in the sense that it only models the relation among channels in a contrastive way (i.e., channels that play key roles in the prediction are given higher weights for them to stand out in the fusion). The collaborative relation, which makes the channels work together to provide cross reference, has been ignored. Furthermore, the model has neglected the intra-channel relation thoroughly.In this paper, we address this problem by introducing Conceptor learning into CAM generation. Conceptor leaning has been originally proposed to model the patterns of state changes in recurrent neural networks (RNNs). By relaxing the dependency of Conceptor learning to RNNs, we make Conceptor-CAM not only generalizable to more DNN architectures but also able to learn both the inter- and intra-channel relations for better saliency map generation. Moreover, we have enabled the use of Boolean operations to combine the positive and pseudo-negative evidences, which has made the CAM inference more robust and comprehensive. The effectiveness of Conceptor-CAM has been validated with both formal verifications and experiments on the dataset of the largest scale in literature. The experimental results show that Conceptor-CAM is compatible with and can bring significant improvement to all well recognized CAM-based methods, and has outperformed the state-of-the-art methods by 43.14%~72.79% (88.39%~168.15%) on ILSVRC2012 in Average Increase (Drop), 15.42%~42.55% (47.09%~372.09%) on VOC, and 17.43%~31.32% (47.54%~206.45%) on COCO, respectively.