Abstract:Medical Visual Question Answering (VQA) is an essential technology that integrates computer vision and natural language processing to automatically respond to clinical inquiries about medical images. However, current medical VQA datasets exhibit two significant limitations: (1) they often lack visual and textual explanations for answers, which impedes their ability to satisfy the comprehension needs of patients and junior doctors; (2) they typically offer a narrow range of question formats, inadequately reflecting the diverse requirements encountered in clinical scenarios. These limitations pose significant challenges to the development of a reliable and user-friendly Med-VQA system. To address these challenges, we introduce a large-scale, Groundable, and Explainable Medical VQA benchmark for chest X-ray diagnosis (GEMeX), featuring several innovative components: (1) A multi-modal explainability mechanism that offers detailed visual and textual explanations for each question-answer pair, thereby enhancing answer comprehensibility; (2) Four distinct question types, open-ended, closed-ended, single-choice, and multiple-choice, that better reflect diverse clinical needs. We evaluated 10 representative large vision language models on GEMeX and found that they underperformed, highlighting the dataset's complexity. However, after fine-tuning a baseline model using the training set, we observed a significant performance improvement, demonstrating the dataset's effectiveness. The project is available at www.med-vqa.com/GEMeX.
Abstract:Federated Learning (FL) enables collaborative, personalized model training across multiple devices without sharing raw data, making it ideal for pervasive computing applications that optimize user-centric performances in diverse environments. However, data heterogeneity among clients poses a significant challenge, leading to inconsistencies among trained client models and reduced performance. To address this, we introduce the Alignment with Prototypes (ALP) layers, which align incoming embeddings closer to learnable prototypes through an optimal transport plan. During local training, the ALP layer updates local prototypes and aligns embeddings toward global prototypes aggregated from all clients using our novel FL framework, Federated Alignment (FedAli). For model inferences, embeddings are guided toward local prototypes to better reflect the client's local data distribution. We evaluate FedAli on heterogeneous sensor-based human activity recognition and vision benchmark datasets, demonstrating that it outperforms existing FL strategies. We publicly release our source code to facilitate reproducibility and furthered research.
Abstract:Multi-point vital sign monitoring is essential for providing detailed insights into physiological changes. Traditional single-sensor approaches are inadequate for capturing multi-point vibrations. Existing contact-based solutions, while addressing this need, can cause discomfort and skin allergies, whereas noncontact optical and acoustic methods are highly susceptible to light interference and environmental noise. In this paper, we aim to develop a non-contact, multi-point vital sign monitoring technique using MIMO radar, focused on physically differentiating and precisely measuring chest-wall surface vibrations at multiple points induced by cardiopulmonary mechanical activity. The primary challenges in developing such a technique involve developing algorithms to extract and separate entangled signals, as well as establishing a reliable method for validating detection accuracy. To address these limitations, we introduce MultiVital, a wireless system that leverages mmWave Multiple-input Multiple-output (MIMO) radar for synchronous multi-point vital sign monitoring. It integrates two reference modalities: five-channel seismocardiography (SCG) sensors and a one-channel electrocardiogram (ECG) electrode, enabling comprehensive radar-based research and performance validation across multiple physiological metrics. Additionally, we have developed a multi-modal signal processing framework, consisting of a radar signal processing module, an SCG calibration module, and a spatial alignment scheme. To evaluate the radar signal processing module, we conducted mathematical derivation and simulation. The experimental results indicate that the noncontact MultiVital system achieves multi-point synchronous monitoring with high precision, highly consistent with the results from reference modalities.
Abstract:Literature reviews play a crucial role in scientific research for understanding the current state of research, identifying gaps, and guiding future studies on specific topics. However, the process of conducting a comprehensive literature review is yet time-consuming. This paper proposes a novel framework, collaborative knowledge minigraph agents (CKMAs), to automate scholarly literature reviews. A novel prompt-based algorithm, the knowledge minigraph construction agent (KMCA), is designed to identify relationships between information pieces from academic literature and automatically constructs knowledge minigraphs. By leveraging the capabilities of large language models on constructed knowledge minigraphs, the multiple path summarization agent (MPSA) efficiently organizes information pieces and relationships from different viewpoints to generate literature review paragraphs. We evaluate CKMAs on three benchmark datasets. Experimental results demonstrate that the proposed techniques generate informative, complete, consistent, and insightful summaries for different research problems, promoting the use of LLMs in more professional fields.
Abstract:Despite advancements in Text-to-Video (T2V) generation, producing videos with realistic motion remains challenging. Current models often yield static or minimally dynamic outputs, failing to capture complex motions described by text. This issue stems from the internal biases in text encoding, which overlooks motions, and inadequate conditioning mechanisms in T2V generation models. To address this, we propose a novel framework called DEcomposed MOtion (DEMO), which enhances motion synthesis in T2V generation by decomposing both text encoding and conditioning into content and motion components. Our method includes a content encoder for static elements and a motion encoder for temporal dynamics, alongside separate content and motion conditioning mechanisms. Crucially, we introduce text-motion and video-motion supervision to improve the model's understanding and generation of motion. Evaluations on benchmarks such as MSR-VTT, UCF-101, WebVid-10M, EvalCrafter, and VBench demonstrate DEMO's superior ability to produce videos with enhanced motion dynamics while maintaining high visual quality. Our approach significantly advances T2V generation by integrating comprehensive motion understanding directly from textual descriptions. Project page: https://PR-Ryan.github.io/DEMO-project/
Abstract:Explainable molecular property prediction is essential for various scientific fields, such as drug discovery and material science. Despite delivering intrinsic explainability, linear models struggle with capturing complex, non-linear patterns. Large language models (LLMs), on the other hand, yield accurate predictions through powerful inference capabilities yet fail to provide chemically meaningful explanations for their predictions. This work proposes a novel framework, called MoleX, which leverages LLM knowledge to build a simple yet powerful linear model for accurate molecular property prediction with faithful explanations. The core of MoleX is to model complicated molecular structure-property relationships using a simple linear model, augmented by LLM knowledge and a crafted calibration strategy. Specifically, to extract the maximum amount of task-relevant knowledge from LLM embeddings, we employ information bottleneck-inspired fine-tuning and sparsity-inducing dimensionality reduction. These informative embeddings are then used to fit a linear model for explainable inference. Moreover, we introduce residual calibration to address prediction errors stemming from linear models' insufficient expressiveness of complex LLM embeddings, thus recovering the LLM's predictive power and boosting overall accuracy. Theoretically, we provide a mathematical foundation to justify MoleX's explainability. Extensive experiments demonstrate that MoleX outperforms existing methods in molecular property prediction, establishing a new milestone in predictive performance, explainability, and efficiency. In particular, MoleX enables CPU inference and accelerates large-scale dataset processing, achieving comparable performance 300x faster with 100,000 fewer parameters than LLMs. Additionally, the calibration improves model performance by up to 12.7% without compromising explainability.
Abstract:Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identifying equivalent entity pairs. Existing methods can be categorized into symbolic and neural models. Symbolic models, while precise, struggle with substructure heterogeneity and sparsity, whereas neural models, although effective, generally lack interpretability and cannot handle uncertainty. We propose NeuSymEA, a probabilistic neuro-symbolic framework that combines the strengths of both methods. NeuSymEA models the joint probability of all possible pairs' truth scores in a Markov random field, regulated by a set of rules, and optimizes it with the variational EM algorithm. In the E-step, a neural model parameterizes the truth score distributions and infers missing alignments. In the M-step, the rule weights are updated based on the observed and inferred alignments. To facilitate interpretability, we further design a path-ranking-based explainer upon this framework that generates supporting rules for the inferred alignments. Experiments on benchmarks demonstrate that NeuSymEA not only significantly outperforms baselines in terms of effectiveness and robustness, but also provides interpretable results.
Abstract:In continual learning (CL), model growth enhances adaptability over new data, improving knowledge retention for more tasks. However, improper model growth can lead to severe degradation of previously learned knowledge, an issue we name as growth-induced forgetting (GIFt), especially in task-agnostic CL using entire grown model for inference. Existing works, despite adopting model growth and random initialization for better adaptability, often fail to recognize the presence of GIFt caused by improper model growth. This oversight limits comprehensive control of forgetting and hinders full utilization of model growth. We are the first in CL to identify this issue and conduct an in-depth study on root cause of GIFt, where layer expansion stands out among model growth strategies, widening layers without affecting model functionality. Yet, direct adoption of layer expansion presents challenges. It lacks data-driven control and initialization of expanded parameters to balance adaptability and knowledge retention. This paper presents a novel SparseGrow approach to overcome the issue of GIFt while enhancing adaptability over new data. SparseGrow employs data-driven sparse layer expansion to control efficient parameter usage during growth, reducing GIFt from excessive growth and functionality changes. It also combines sparse growth with on-data initialization at training late-stage to create partially 0-valued expansions that fit learned distribution, enhancing retention and adaptability. To further minimize forgetting, freezing is applied by calculating the sparse mask, allowing data-driven preservation of important parameters. Through experiments across datasets with various settings, cases and task numbers, we demonstrate the necessity of layer expansion and showcase the effectiveness of SparseGrow in overcoming GIFt, highlighting its adaptability and knowledge retention for incremental tasks.
Abstract:Accurate human localization is crucial for various applications, especially in the Metaverse era. Existing high precision solutions rely on expensive, tag-dependent hardware, while vision-based methods offer a cheaper, tag-free alternative. However, current vision solutions based on stereo vision face limitations due to rigid perspective transformation principles and error propagation in multi-stage SVD solvers. These solutions also require multiple high-resolution cameras with strict setup constraints. To address these limitations, we propose a probabilistic approach that considers all points on the human body as observations generated by a distribution centered around the body's geometric center. This enables us to improve sampling significantly, increasing the number of samples for each point of interest from hundreds to billions. By modeling the relation between the means of the distributions of world coordinates and pixel coordinates, leveraging the Central Limit Theorem, we ensure normality and facilitate the learning process. Experimental results demonstrate human localization accuracy of 95% within a 0.3m range and nearly 100% accuracy within a 0.5m range, achieved at a low cost of only 10 USD using two web cameras with a resolution of 640x480 pixels.
Abstract:Personalized Federated Learning (PFL) is a commonly used framework that allows clients to collaboratively train their personalized models. PFL is particularly useful for handling situations where data from different clients are not independent and identically distributed (non-IID). Previous research in PFL implicitly assumes that clients can gain more benefits from those with similar data distributions. Correspondingly, methods such as personalized weight aggregation are developed to assign higher weights to similar clients during training. We pose a question: can a client benefit from other clients with dissimilar data distributions and if so, how? This question is particularly relevant in scenarios with a high degree of non-IID, where clients have widely different data distributions, and learning from only similar clients will lose knowledge from many other clients. We note that when dealing with clients with similar data distributions, methods such as personalized weight aggregation tend to enforce their models to be close in the parameter space. It is reasonable to conjecture that a client can benefit from dissimilar clients if we allow their models to depart from each other. Based on this idea, we propose DiversiFed which allows each client to learn from clients with diversified data distribution in personalized federated learning. DiversiFed pushes personalized models of clients with dissimilar data distributions apart in the parameter space while pulling together those with similar distributions. In addition, to achieve the above effect without using prior knowledge of data distribution, we design a loss function that leverages the model similarity to determine the degree of attraction and repulsion between any two models. Experiments on several datasets show that DiversiFed can benefit from dissimilar clients and thus outperform the state-of-the-art methods.