Abstract:Generating SQLs from user queries is a long-standing challenge, where the accuracy of initial schema linking significantly impacts subsequent SQL generation performance. However, current schema linking models still struggle with missing relevant schema elements or an excess of redundant ones. A crucial reason for this is that commonly used metrics, recall and precision, fail to capture relevant element missing and thus cannot reflect actual schema linking performance. Motivated by this, we propose an enhanced schema linking metric by introducing a restricted missing indicator. Accordingly, we introduce Knapsack optimization-based Schema Linking Agent (KaSLA), a plug-in schema linking agent designed to prevent the missing of relevant schema elements while minimizing the inclusion of redundant ones. KaSLA employs a hierarchical linking strategy that first identifies the optimal table linking and subsequently links columns within the selected table to reduce linking candidate space. In each linking process, it utilize a knapsack optimization approach to link potentially relevant elements while accounting for a limited tolerance of potential redundant ones.With this optimization, KaSLA-1.6B achieves superior schema linking results compared to large-scale LLMs, including deepseek-v3 with state-of-the-art (SOTA) schema linking method. Extensive experiments on Spider and BIRD benchmarks verify that KaSLA can significantly improve the SQL generation performance of SOTA text-to-SQL models by substituting their schema linking processes.
Abstract:Recent efforts leverage Large Language Models (LLMs) for modeling text-attributed graph structures in node classification tasks. These approaches describe graph structures for LLMs to understand or aggregate LLM-generated textual attribute embeddings through graph structure. However, these approaches face two main limitations in modeling graph structures with LLMs. (i) Graph descriptions become verbose in describing high-order graph structure. (ii) Textual attributes alone do not contain adequate graph structure information. It is challenging to model graph structure concisely and adequately with LLMs. LLMs lack built-in mechanisms to model graph structures directly. They also struggle with complex long-range dependencies between high-order nodes and target nodes. Inspired by the observation that LLMs pre-trained on one language can achieve exceptional performance on another with minimal additional training, we propose \textbf{G}raph-\textbf{D}efined \textbf{L}anguage for \textbf{L}arge \textbf{L}anguage \textbf{M}odel (GDL4LLM). This novel framework enables LLMs to transfer their powerful language understanding capabilities to graph-structured data. GDL4LLM translates graphs into a graph language corpus instead of graph descriptions and pre-trains LLMs on this corpus to adequately understand graph structures. During fine-tuning, this corpus describes the structural information of target nodes concisely with only a few tokens. By treating graphs as a new language, GDL4LLM enables LLMs to model graph structures adequately and concisely for node classification tasks. Extensive experiments on three real-world datasets demonstrate that GDL4LLM outperforms description-based and textual attribute embeddings-based baselines by efficiently modeling different orders of graph structure with LLMs.
Abstract:With the continuous advancement of large language models (LLMs) in mathematical reasoning, evaluating their performance in this domain has become a prominent research focus. Recent studies have raised concerns about the reliability of current mathematical benchmarks, highlighting issues such as simplistic design and potential data leakage. Therefore, creating a reliable benchmark that effectively evaluates the genuine capabilities of LLMs in mathematical reasoning remains a significant challenge. To address this, we propose RV-Bench, a framework for Benchmarking LLMs via Random Variables in mathematical reasoning. Specifically, the background content of a random variable question (RV question) mirrors the original problem in existing standard benchmarks, but the variable combinations are randomized into different values. LLMs must fully understand the problem-solving process for the original problem to correctly answer RV questions with various combinations of variable values. As a result, the LLM's genuine capability in mathematical reasoning is reflected by its accuracy on RV-Bench. Extensive experiments are conducted with 29 representative LLMs across 900+ RV questions. A leaderboard for RV-Bench ranks the genuine capability of these LLMs. Further analysis of accuracy dropping indicates that current LLMs still struggle with complex mathematical reasoning problems.
Abstract:Heterogeneous information networks (HINs) can be used to model various real-world systems. As HINs consist of multiple types of nodes, edges, and node features, it is nontrivial to directly apply graph neural network (GNN) techniques in heterogeneous cases. There are two remaining major challenges. First, homogeneous message passing in a recursive manner neglects the distinct types of nodes and edges in different hops, leading to unnecessary information mixing. This often results in the incorporation of ``noise'' from uncorrelated intermediate neighbors, thereby degrading performance. Second, feature learning should be handled differently for different types, which is challenging especially when the type sizes are large. To bridge this gap, we develop a novel framework - AutoGNR, to directly utilize and automatically extract effective heterogeneous information. Instead of recursive homogeneous message passing, we introduce a non-recursive message passing mechanism for GNN to mitigate noise from uncorrelated node types in HINs. Furthermore, under the non-recursive framework, we manage to efficiently perform neural architecture search for an optimal GNN structure in a differentiable way, which can automatically define the heterogeneous paths for aggregation. Our tailored search space encompasses more effective candidates while maintaining a tractable size. Experiments show that AutoGNR consistently outperforms state-of-the-art methods on both normal and large scale real-world HIN datasets.
Abstract:World model emerges as a key module in decision making, where MuZero and Dreamer achieve remarkable successes in complex tasks. Recent work leverages Large Language Models (LLMs) as general world simulators to simulate the dynamics of the world due to their generalizability. LLMs also serve as the world model for deliberative reasoning in Reasoning via Planning (RAP) and Tree of Thought (ToT). However, the world models are either evaluated as a general world simulator, or as a functional module of the agent, i.e., predicting the transitions to assist the planning. In this work, we propose a comprehensive evaluation of the world models with LLMs from the decision making perspective. Specifically, we leverage the 31 diverse environments from (Wang et al., 2023;2024) and curate the rule-based policy of each environment for the diverse evaluation. Then, we design three main tasks, i.e., policy verification, action proposal, and policy planning, where the world models can be used for decision making solely. Finally, we conduct the comprehensive evaluation of the advanced LLMs, i.e., GPT-4o and GPT-4o-mini, on the environments for the three main tasks under various settings. The key observations include: i) GPT-4o significantly outperforms GPT-4o-mini on the three main tasks, especially for the tasks which require the domain knowledge, ii) the performance of the world model with LLM will be decreased for long-term decision-making tasks, and iii) the combination of different functionalities of the world model will brings additional unstabilities of the performance.
Abstract:Recently, large vision language models (VLMs) have made significant strides in visual language capabilities through visual instruction tuning, showing great promise in the field of remote sensing image interpretation. However, existing remote sensing vision language models (RSVLMs) often fall short in capturing the complex characteristics of remote sensing scenes, as they typically rely on low resolution, single scale visual features and simplistic methods to map visual features to language features. In this paper, we present Aquila, an advanced visual language foundation model designed to enable richer visual feature representation and more precise visual-language feature alignment for remote sensing images. Our approach introduces a learnable Hierarchical Spatial Feature Integration (SFI) module that supports high resolution image inputs and aggregates multi scale visual features, allowing for the detailed representation of complex visual information. Additionally, the SFI module is repeatedly integrated into the layers of the large language model (LLM) to achieve deep visual language feature alignment, without compromising the model's performance in natural language processing tasks. These innovations, capturing detailed visual effects through higher resolution and multi scale input, and enhancing feature alignment significantly improve the model's ability to learn from image text data. We validate the effectiveness of Aquila through extensive quantitative experiments and qualitative analyses, demonstrating its superior performance.
Abstract:Recent self-supervised learning (SSL) methods have demonstrated impressive results in learning visual representations from unlabeled remote sensing images. However, most remote sensing images predominantly consist of scenographic scenes containing multiple ground objects without explicit foreground targets, which limits the performance of existing SSL methods that focus on foreground targets. This raises the question: Is there a method that can automatically aggregate similar objects within scenographic remote sensing images, thereby enabling models to differentiate knowledge embedded in various geospatial patterns for improved feature representation? In this work, we present the Pattern Integration and Enhancement Vision Transformer (PIEViT), a novel self-supervised learning framework designed specifically for remote sensing imagery. PIEViT utilizes a teacher-student architecture to address both image-level and patch-level tasks. It employs the Geospatial Pattern Cohesion (GPC) module to explore the natural clustering of patches, enhancing the differentiation of individual features. The Feature Integration Projection (FIP) module further refines masked token reconstruction using geospatially clustered patches. We validated PIEViT across multiple downstream tasks, including object detection, semantic segmentation, and change detection. Experiments demonstrated that PIEViT enhances the representation of internal patch features, providing significant improvements over existing self-supervised baselines. It achieves excellent results in object detection, land cover classification, and change detection, underscoring its robustness, generalization, and transferability for remote sensing image interpretation tasks.
Abstract:Collaborative filtering (CF) models have demonstrated remarkable performance in recommender systems, which represent users and items as embedding vectors. Recently, due to the powerful modeling capability of graph neural networks for user-item interaction graphs, graph-based CF models have gained increasing attention. They encode each user/item and its subgraph into a single super vector by combining graph embeddings after each graph convolution. However, each hop of the neighbor in the user-item subgraphs carries a specific semantic meaning. Encoding all subgraph information into single vectors and inferring user-item relations with dot products can weaken the semantic information between user and item subgraphs, thus leaving untapped potential. Exploiting this untapped potential provides insight into improving performance for existing recommendation models. To this end, we propose the Graph Cross-correlated Network for Recommendation (GCR), which serves as a general recommendation paradigm that explicitly considers correlations between user/item subgraphs. GCR first introduces the Plain Graph Representation (PGR) to extract information directly from each hop of neighbors into corresponding PGR vectors. Then, GCR develops Cross-Correlated Aggregation (CCA) to construct possible cross-correlated terms between PGR vectors of user/item subgraphs. Finally, GCR comprehensively incorporates the cross-correlated terms for recommendations. Experimental results show that GCR outperforms state-of-the-art models on both interaction prediction and click-through rate prediction tasks.
Abstract:Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. Q$\rightarrow$A is utilized to measure the performance of direct answer prediction, and Q$\rightarrow$AR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% Q$\rightarrow$A to 39.00% Q$\rightarrow$AR, indicating an unsatisfactory reasoning ability.
Abstract:Entity alignment (EA) aims to merge two knowledge graphs (KGs) by identifying equivalent entity pairs. Existing methods can be categorized into symbolic and neural models. Symbolic models, while precise, struggle with substructure heterogeneity and sparsity, whereas neural models, although effective, generally lack interpretability and cannot handle uncertainty. We propose NeuSymEA, a probabilistic neuro-symbolic framework that combines the strengths of both methods. NeuSymEA models the joint probability of all possible pairs' truth scores in a Markov random field, regulated by a set of rules, and optimizes it with the variational EM algorithm. In the E-step, a neural model parameterizes the truth score distributions and infers missing alignments. In the M-step, the rule weights are updated based on the observed and inferred alignments. To facilitate interpretability, we further design a path-ranking-based explainer upon this framework that generates supporting rules for the inferred alignments. Experiments on benchmarks demonstrate that NeuSymEA not only significantly outperforms baselines in terms of effectiveness and robustness, but also provides interpretable results.