Abstract:Scene rearrangement, like table tidying, is a challenging task in robotic manipulation due to the complexity of predicting diverse object arrangements. Web-scale trained generative models such as Stable Diffusion can aid by generating natural scenes as goals. To facilitate robot execution, object-level representations must be extracted to match the real scenes with the generated goals and to calculate object pose transformations. Current methods typically use a multi-step design that involves separate models for generation, segmentation, and feature encoding, which can lead to a low success rate due to error accumulation. Furthermore, they lack control over the viewing perspectives of the generated goals, restricting the tasks to 3-DoF settings. In this paper, we propose PACA, a zero-shot pipeline for scene rearrangement that leverages perspective-aware cross-attention representation derived from Stable Diffusion. Specifically, we develop a representation that integrates generation, segmentation, and feature encoding into a single step to produce object-level representations. Additionally, we introduce perspective control, thus enabling the matching of 6-DoF camera views and extending past approaches that were limited to 3-DoF top-down views. The efficacy of our method is demonstrated through its zero-shot performance in real robot experiments across various scenes, achieving an average matching accuracy and execution success rate of 87% and 67%, respectively.
Abstract:In this paper, we propose a new approach to train deep learning models using game theory concepts including Generative Adversarial Networks (GANs) and Adversarial Training (AT) where we deploy a double-oracle framework using best response oracles. GAN is essentially a two-player zero-sum game between the generator and the discriminator. The same concept can be applied to AT with attacker and classifier as players. Training these models is challenging as a pure Nash equilibrium may not exist and even finding the mixed Nash equilibrium is difficult as training algorithms for both GAN and AT have a large-scale strategy space. Extending our preliminary model DO-GAN, we propose the methods to apply the double oracle framework concept to Adversarial Neural Architecture Search (NAS for GAN) and Adversarial Training (NAS for AT) algorithms. We first generalize the players' strategies as the trained models of generator and discriminator from the best response oracles. We then compute the meta-strategies using a linear program. For scalability of the framework where multiple network models of best responses are stored in the memory, we prune the weakly-dominated players' strategies to keep the oracles from becoming intractable. Finally, we conduct experiments on MNIST, CIFAR-10 and TinyImageNet for DONAS-GAN. We also evaluate the robustness under FGSM and PGD attacks on CIFAR-10, SVHN and TinyImageNet for DONAS-AT. We show that all our variants have significant improvements in both subjective qualitative evaluation and quantitative metrics, compared with their respective base architectures.
Abstract:An end-to-end (E2E) visuomotor policy is typically treated as a unified whole, but recent approaches using out-of-domain (OOD) data to pretrain the visual encoder have cleanly separated the visual encoder from the network, with the remainder referred to as the policy. We propose Visual Alignment Testing, an experimental framework designed to evaluate the validity of this functional separation. Our results indicate that in E2E-trained models, visual encoders actively contribute to decision-making resulting from motor data supervision, contradicting the assumed functional separation. In contrast, OOD-pretrained models, where encoders lack this capability, experience an average performance drop of 42% in our benchmark results, compared to the state-of-the-art performance achieved by E2E policies. We believe this initial exploration of visual encoders' role can provide a first step towards guiding future pretraining methods to address their decision-making ability, such as developing task-conditioned or context-aware encoders.
Abstract:Current common interactions with language models is through full inference. This approach may not necessarily align with the model's internal knowledge. Studies show discrepancies between prompts and internal representations. Most focus on sentence understanding. We study the discrepancy of word semantics understanding in internal and external mismatch across Encoder-only, Decoder-only, and Encoder-Decoder pre-trained language models.
Abstract:The recent surge in Generative Artificial Intelligence (AI) has introduced exciting possibilities for computational chemistry. Generative AI methods have made significant progress in sampling molecular structures across chemical species, developing force fields, and speeding up simulations. This Perspective offers a structured overview, beginning with the fundamental theoretical concepts in both Generative AI and computational chemistry. It then covers widely used Generative AI methods, including autoencoders, generative adversarial networks, reinforcement learning, flow models and language models, and highlights their selected applications in diverse areas including force field development, and protein/RNA structure prediction. A key focus is on the challenges these methods face before they become truly predictive, particularly in predicting emergent chemical phenomena. We believe that the ultimate goal of a simulation method or theory is to predict phenomena not seen before, and that Generative AI should be subject to these same standards before it is deemed useful for chemistry. We suggest that to overcome these challenges, future AI models need to integrate core chemical principles, especially from statistical mechanics.
Abstract:Although large-scale text-to-image generative models have shown promising performance in synthesizing high-quality images, directly applying these models to image editing remains a significant challenge. This challenge is further amplified in video editing due to the additional dimension of time. Especially for editing real videos as it necessitates maintaining a stable semantic layout across the frames while executing localized edits precisely without disrupting the existing backgrounds. In this paper, we propose RealCraft, an attention-control-based method for zero-shot editing in real videos. By employing the object-centric manipulation of cross-attention between prompts and frames and spatial-temporal attention within the frames, we achieve precise shape-wise editing along with enhanced consistency. Our model can be used directly with Stable Diffusion and operates without the need for additional localized information. We showcase our zero-shot attention-control-based method across a range of videos, demonstrating localized, high-fidelity, shape-precise and time-consistent editing in videos of various lengths, up to 64 frames.
Abstract:Lexical Semantic Change Detection stands out as one of the few areas where Large Language Models (LLMs) have not been extensively involved. Traditional methods like PPMI, and SGNS remain prevalent in research, alongside newer BERT-based approaches. Despite the comprehensive coverage of various natural language processing domains by LLMs, there is a notable scarcity of literature concerning their application in this specific realm. In this work, we seek to bridge this gap by introducing LLMs into the domain of Lexical Semantic Change Detection. Our work presents novel prompting solutions and a comprehensive evaluation that spans all three generations of language models, contributing to the exploration of LLMs in this research area.
Abstract:As transformer architectures and dataset sizes continue to scale, the need to understand the specific dataset factors affecting model performance becomes increasingly urgent. This paper investigates how object physics attributes (color, friction coefficient, shape) and background characteristics (static, dynamic, background complexity) influence the performance of Video Transformers in trajectory prediction tasks under occlusion. Beyond mere occlusion challenges, this study aims to investigate three questions: How do object physics attributes and background characteristics influence the model performance? What kinds of attributes are most influential to the model generalization? Is there a data saturation point for large transformer model performance within a single task? To facilitate this research, we present OccluManip, a real-world video-based robot pushing dataset comprising 460,000 consistent recordings of objects with different physics and varying backgrounds. 1.4 TB and in total 1278 hours of high-quality videos of flexible temporal length along with target object trajectories are collected, accommodating tasks with different temporal requirements. Additionally, we propose Video Occlusion Transformer (VOT), a generic video-transformer-based network achieving an average 96% accuracy across all 18 sub-datasets provided in OccluManip. OccluManip and VOT will be released at: https://github.com/ShutongJIN/OccluManip.git
Abstract:Tabular data prediction is a fundamental machine learning task for many applications. Existing methods predominantly employ discriminative modeling and operate under the assumption of a fixed target column, necessitating re-training for every new predictive task. Inspired by the generative power of large language models (LLMs), this paper exploits the idea of building universal tabular data predictors based on generative modeling, namely UniPredict. Here, we show that scaling up an LLM to extensive tabular datasets with the capability of comprehending diverse tabular inputs and predicting for target variables following the input instructions. Specifically, we train a single LLM on an aggregation of 169 tabular datasets with diverse targets and compare its performance against baselines that are trained on each dataset separately. We observe this versatile UniPredict model demonstrates an advantage over other models, ranging from 5.4% to 13.4%, when compared with the best tree-boosting baseline and the best neural network baseline, respectively. We further test UniPredict in few-shot learning settings on another 62 tabular datasets. Our method achieves strong performance in quickly adapting to new tasks, where our method outperforms XGBoost over 100% on the low-resource setup and shows a significant margin over all baselines. We envision that UniPredict sheds light on developing a universal tabular data prediction system that learns from data at scale and serves a wide range of prediction tasks.
Abstract:There emerges a promising trend of using large language models (LLMs) to generate code-like plans for complex inference tasks such as visual reasoning. This paradigm, known as LLM-based planning, provides flexibility in problem solving and endows better interpretability. However, current research is mostly limited to basic scenarios of simple questions that can be straightforward answered in a few inference steps. Planning for the more challenging multi-hop visual reasoning tasks remains under-explored. Specifically, under multi-hop reasoning situations, the trade-off between accuracy and the complexity of plan-searching becomes prominent. The prevailing algorithms either address the efficiency issue by employing the fast one-stop generation or adopt a complex iterative generation method to improve accuracy. Both fail to balance the need for efficiency and performance. Drawing inspiration from the dual system of cognition in the human brain, the fast and the slow think processes, we propose a hierarchical plan-searching algorithm that integrates the one-stop reasoning (fast) and the Tree-of-thought (slow). Our approach succeeds in performance while significantly saving inference steps. Moreover, we repurpose the PTR and the CLEVER datasets, developing a systematic framework for evaluating the performance and efficiency of LLMs-based plan-search algorithms under reasoning tasks at different levels of difficulty. Extensive experiments demonstrate the superiority of our proposed algorithm in terms of performance and efficiency. The dataset and code will be release soon.