Abstract:Current common interactions with language models is through full inference. This approach may not necessarily align with the model's internal knowledge. Studies show discrepancies between prompts and internal representations. Most focus on sentence understanding. We study the discrepancy of word semantics understanding in internal and external mismatch across Encoder-only, Decoder-only, and Encoder-Decoder pre-trained language models.
Abstract:We present a comprehensive evaluation of large language models(LLMs)' ability to reason about composition relations through a benchmark encompassing 1,500 test cases in English, designed to cover six distinct types of composition relations: Positional, Comparative, Personal, Mathematical, Identity, and Other. Acknowledging the significance of multilingual capabilities, we expanded our assessment to include translations of these cases into Chinese, Japanese, French, and Korean. Our Multilingual Composition Relation (MCR) benchmark aims at investigating the robustness and adaptability of LLMs in handling composition relation reasoning across diverse linguistic contexts.
Abstract:Domain Generalization (DG) aims to reduce domain shifts between domains to achieve promising performance on the unseen target domain, which has been widely practiced in medical image segmentation. Single-source domain generalization (SDG) is the most challenging setting that trains on only one source domain. Although existing methods have made considerable progress on SDG of medical image segmentation, the performances are still far from the applicable standards when faced with a relatively large domain shift. In this paper, we leverage the Segment Anything Model (SAM) to SDG to greatly improve the ability of generalization. Specifically, we introduce a parallel framework, the source images are sent into the SAM module and normal segmentation module respectively. To reduce the calculation resources, we apply a merging strategy before sending images to the SAM module. We extract the bounding boxes from the segmentation module and send the refined version as prompts to the SAM module. We evaluate our model on a classic DG dataset and achieve competitive results compared to other state-of-the-art DG methods. Furthermore, We conducted a series of ablation experiments to prove the effectiveness of the proposed method. The code is publicly available at https://github.com/SARIHUST/SAMMed.