Beijing Key Laboratory of Digital Media, School of Computer Science and Engineering, Beihang University, Beijing, China
Abstract:We present Copyright Detective, the first interactive forensic system for detecting, analyzing, and visualizing potential copyright risks in LLM outputs. The system treats copyright infringement versus compliance as an evidence discovery process rather than a static classification task due to the complex nature of copyright law. It integrates multiple detection paradigms, including content recall testing, paraphrase-level similarity analysis, persuasive jailbreak probing, and unlearning verification, within a unified and extensible framework. Through interactive prompting, response collection, and iterative workflows, our system enables systematic auditing of verbatim memorization and paraphrase-level leakage, supporting responsible deployment and transparent evaluation of LLM copyright risks even with black-box access.
Abstract:Automated Driving System (ADS) acts as the brain of autonomous vehicles, responsible for their safety and efficiency. Safe deployment requires thorough testing in diverse real-world scenarios and compliance with traffic laws like speed limits, signal obedience, and right-of-way rules. Violations like running red lights or speeding pose severe safety risks. However, current testing approaches face significant challenges: limited ability to generate complex and high-risk law-breaking scenarios, and failing to account for complex interactions involving multiple vehicles and critical situations. To address these challenges, we propose ROMAN, a novel scenario generation approach for ADS testing that combines a multi-head attention network with a traffic law weighting mechanism. ROMAN is designed to generate high-risk violation scenarios to enable more thorough and targeted ADS evaluation. The multi-head attention mechanism models interactions among vehicles, traffic signals, and other factors. The traffic law weighting mechanism implements a workflow that leverages an LLM-based risk weighting module to evaluate violations based on the two dimensions of severity and occurrence. We have evaluated ROMAN by testing the Baidu Apollo ADS within the CARLA simulation platform and conducting extensive experiments to measure its performance. Experimental results demonstrate that ROMAN surpassed state-of-the-art tools ABLE and LawBreaker by achieving 7.91% higher average violation count than ABLE and 55.96% higher than LawBreaker, while also maintaining greater scenario diversity. In addition, only ROMAN successfully generated violation scenarios for every clause of the input traffic laws, enabling it to identify more high-risk violations than existing approaches.
Abstract:A/B testing on platforms often faces challenges from network interference, where a unit's outcome depends not only on its own treatment but also on the treatments of its network neighbors. To address this, cluster-level randomization has become standard, enabling the use of network-aware estimators. These estimators typically trim the data to retain only a subset of informative units, achieving low bias under suitable conditions but often suffering from high variance. In this paper, we first demonstrate that the interior nodes - units whose neighbors all lie within the same cluster - constitute the vast majority of the post-trimming subpopulation. In light of this, we propose directly averaging over the interior nodes to construct the mean-in-interior (MII) estimator, which circumvents the delicate reweighting required by existing network-aware estimators and substantially reduces variance in classical settings. However, we show that interior nodes are often not representative of the full population, particularly in terms of network-dependent covariates, leading to notable bias. We then augment the MII estimator with a counterfactual predictor trained on the entire network, allowing us to adjust for covariate distribution shifts between the interior nodes and full population. By rearranging the expression, we reveal that our augmented MII estimator embodies an analytical form of the point estimator within prediction-powered inference framework. This insight motivates a semi-supervised lens, wherein interior nodes are treated as labeled data subject to selection bias. Extensive and challenging simulation studies demonstrate the outstanding performance of our augmented MII estimator across various settings.
Abstract:Unified multimodal large language models (MLLMs) integrate image understanding and generation in a single framework, with the visual tokenizer acting as the sole interface that maps visual inputs into tokens for downstream tasks. However, existing shared-token designs are mostly architecture-driven and lack an explicit criterion for what information tokens should preserve to support both understanding and generation. Therefore, we introduce a capacity-constrained perspective, highlighting that in shared-token unified MLLMs the visual tokenizer behaves as a compute-bounded learner, so the token budget should prioritize reusable structure over hard-to-exploit high-entropy variations and redundancy. Motivated by this perspective, we propose InfoTok, an information-regularized visual tokenization mechanism grounded in the Information Bottleneck (IB) principle. InfoTok formulates tokenization as controlling information flow from images to shared tokens to multimodal outputs, yielding a principled trade-off between compression and task relevance via mutual-information regularization. We integrate InfoTok into three representative unified MLLMs without introducing any additional training data. Experiments show consistent improvements on both understanding and generation, supporting information-regularized tokenization as a principled foundation for learning a shared token space in unified MLLMs.
Abstract:Training large language models using 4-bit arithmetic enhances throughput and memory efficiency. Yet, the limited dynamic range of FP4 increases sensitivity to outliers. While NVFP4 mitigates quantization error via hierarchical microscaling, a persistent loss gap remains compared to BF16. This study conducts a longitudinal analysis of outlier dynamics across architecture during NVFP4 pretraining, focusing on where they localize, why they occur, and how they evolve temporally. We find that, compared with Softmax Attention (SA), Linear Attention (LA) reduces per-tensor heavy tails but still exhibits persistent block-level spikes under block quantization. Our analysis attributes outliers to specific architectural components: Softmax in SA, gating in LA, and SwiGLU in FFN, with "post-QK" operations exhibiting higher sensitivity to quantization. Notably, outliers evolve from transient spikes early in training to a small set of persistent hot channels (i.e., channels with persistently large magnitudes) in later stages. Based on these findings, we introduce Hot-Channel Patch (HCP), an online compensation mechanism that identifies hot channels and reinjects residuals using hardware-efficient kernels. We then develop CHON, an NVFP4 training recipe integrating HCP with post-QK operation protection. On GLA-1.3B model trained for 60B tokens, CHON reduces the loss gap to BF16 from 0.94% to 0.58% while maintaining downstream accuracy.
Abstract:Recent works have explored reference-based super-resolution (RefSR) to mitigate hallucinations in diffusion-based image restoration. A key challenge is that real-world degradations make correspondences between low-quality (LQ) inputs and reference (Ref) images unreliable, requiring adaptive control of reference usage. Existing methods either ignore LQ-Ref correlations or rely on brittle explicit matching, leading to over-reliance on misleading references or under-utilization of valuable cues. To address this, we propose Ada-RefSR, a single-step diffusion framework guided by a "Trust but Verify" principle: reference information is leveraged when reliable and suppressed otherwise. Its core component, Adaptive Implicit Correlation Gating (AICG), employs learnable summary tokens to distill dominant reference patterns and capture implicit correlations with LQ features. Integrated into the attention backbone, AICG provides lightweight, adaptive regulation of reference guidance, serving as a built-in safeguard against erroneous fusion. Experiments on multiple datasets demonstrate that Ada-RefSR achieves a strong balance of fidelity, naturalness, and efficiency, while remaining robust under varying reference alignment.
Abstract:Training Large Language Models (LLMs) at ultra-low precision is critically impeded by instability rooted in the conflict between discrete quantization constraints and the intrinsic heavy-tailed spectral nature of linguistic data. By formalizing the connection between Zipfian statistics and random matrix theory, we prove that the power-law decay in the singular value spectra of embeddings is a fundamental requisite for semantic encoding. We derive theoretical bounds showing that uniform quantization introduces a noise floor that disproportionately truncates this spectral tail, which induces spectral flattening and a strictly provable increase in the stable rank of representations. Empirical validation across diverse architectures including GPT-2 and TinyLlama corroborates that this geometric degradation precipitates representational collapse. This work not only quantifies the spectral sensitivity of LLMs but also establishes spectral fidelity as a necessary condition for stable low-bit optimization.
Abstract:Information-seeking agents have emerged as a powerful paradigm for solving knowledge-intensive tasks. Existing information-seeking agents are typically specialized for open web, documents, or local knowledge bases, which constrains scalability and cross-domain generalization. In this work, we investigate how to consolidate heterogeneous information-seeking agents into a single foundation agentic model. We study two complementary consolidation strategies: data-level consolidation, which jointly trains a unified model on a mixture of domain-specific datasets, and parameter-level consolidation, which merges independently trained agent models at the parameter level. Our analysis compares these approaches in terms of performance retention, cross-domain generalization, and interference across information-seeking behaviors. Our results show that data-level consolidation remains a strong and stable baseline, while parameter-level consolidation offers a promising, efficient alternative but suffers from interference and robustness challenges. We further identify key design factors for effective agent consolidation at the parameter level, including fine-grained merging granularity, awareness of task heterogeneity, and principled consensus strategy.
Abstract:Autonomous code agents built on large language models are reshaping software and AI development through tool use, long-horizon reasoning, and self-directed interaction. However, this autonomy introduces a previously unrecognized security risk: agentic interaction fundamentally expands the LLM attack surface, enabling systematic probing and recovery of hidden system prompts that guide model behavior. We identify system prompt extraction as an emergent vulnerability intrinsic to code agents and present \textbf{\textsc{JustAsk}}, a self-evolving framework that autonomously discovers effective extraction strategies through interaction alone. Unlike prior prompt-engineering or dataset-based attacks, \textsc{JustAsk} requires no handcrafted prompts, labeled supervision, or privileged access beyond standard user interaction. It formulates extraction as an online exploration problem, using Upper Confidence Bound-based strategy selection and a hierarchical skill space spanning atomic probes and high-level orchestration. These skills exploit imperfect system-instruction generalization and inherent tensions between helpfulness and safety. Evaluated on \textbf{41} black-box commercial models across multiple providers, \textsc{JustAsk} consistently achieves full or near-complete system prompt recovery, revealing recurring design- and architecture-level vulnerabilities. Our results expose system prompts as a critical yet largely unprotected attack surface in modern agent systems.
Abstract:We introduce UEval, a benchmark to evaluate unified models, i.e., models capable of generating both images and text. UEval comprises 1,000 expert-curated questions that require both images and text in the model output, sourced from 8 real-world tasks. Our curated questions cover a wide range of reasoning types, from step-by-step guides to textbook explanations. Evaluating open-ended multimodal generation is non-trivial, as simple LLM-as-a-judge methods can miss the subtleties. Different from previous works that rely on multimodal Large Language Models (MLLMs) to rate image quality or text accuracy, we design a rubric-based scoring system in UEval. For each question, reference images and text answers are provided to a MLLM to generate an initial rubric, consisting of multiple evaluation criteria, and human experts then refine and validate these rubrics. In total, UEval contains 10,417 validated rubric criteria, enabling scalable and fine-grained automatic scoring. UEval is challenging for current unified models: GPT-5-Thinking scores only 66.4 out of 100, while the best open-source model reaches merely 49.1. We observe that reasoning models often outperform non-reasoning ones, and transferring reasoning traces from a reasoning model to a non-reasoning model significantly narrows the gap. This suggests that reasoning may be important for tasks requiring complex multimodal understanding and generation.