School of Information and Communication Engineering, Xidian University, Xi'an, China
Abstract:Recent advancements demonstrated by DeepSeek-R1 have shown that complex reasoning abilities in large language models (LLMs), including sophisticated behaviors such as self-verification and self-correction, can be achieved by RL with verifiable rewards and significantly improves model performance on challenging tasks such as AIME. Motivated by these findings, our study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs) and assesses their impact on challenging multimodal reasoning tasks. We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization. Initially, reasoning capabilities were distilled from pure-text R1 models by generating reasoning steps using high-quality captions of the images sourced from diverse visual datasets. Subsequently, iterative RL training further enhance reasoning skills, with each iteration's RL-improved model generating refined SFT datasets for the next round. This iterative process yielded OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrating the potential of our strategy for robust vision-language reasoning. The code, model and data are held at https://github.com/yihedeng9/OpenVLThinker.
Abstract:Graph-based collaborative filtering has been established as a prominent approach in recommendation systems, leveraging the inherent graph topology of user-item interactions to model high-order connectivity patterns and enhance recommendation performance. Recent advances in Graph Contrastive Learning (GCL) have demonstrated promising potential to alleviate data sparsity issues by improving representation learning through contrastive view generation and mutual information maximization. However, existing approaches lack effective data augmentation strategies. Structural augmentation risks distorting fundamental graph topology, while feature-level perturbation techniques predominantly employ uniform noise scales that fail to account for node-specific characteristics. To solve these challenges, we propose Diffusion-augmented Contrastive Learning (DGCL), an innovative framework that integrates diffusion models with contrastive learning for enhanced collaborative filtering. Our approach employs a diffusion process that learns node-specific Gaussian distributions of representations, thereby generating semantically consistent yet diversified contrastive views through reverse diffusion sampling. DGCL facilitates adaptive data augmentation based on reconstructed representations, considering both semantic coherence and node-specific features. In addition, it explores unrepresented regions of the latent sparse feature space, thereby enriching the diversity of contrastive views. Extensive experimental results demonstrate the effectiveness of DGCL on three public datasets.
Abstract:High-fidelity imaging is crucial for the successful safety supervision and intelligent deployment of vision-based measurement systems (VBMS). It ensures high-quality imaging in VBMS, which is fundamental for reliable visual measurement and analysis. However, imaging quality can be significantly impaired by adverse weather conditions, particularly rain, leading to blurred images and reduced contrast. Such impairments increase the risk of inaccurate evaluations and misinterpretations in VBMS. To address these limitations, we propose an Expectation Maximization Reconstruction Transformer (EMResformer) for single image rain streak removal. The EMResformer retains the key self-attention values for feature aggregation, enhancing local features to produce superior image reconstruction. Specifically, we propose an Expectation Maximization Block seamlessly integrated into the single image rain streak removal network, enhancing its ability to eliminate superfluous information and restore a cleaner background image. Additionally, to further enhance local information for improved detail rendition, we introduce a Local Model Residual Block, which integrates two local model blocks along with a sequence of convolutions and activation functions. This integration synergistically facilitates the extraction of more pertinent features for enhanced single image rain streak removal. Extensive experiments validate that our proposed EMResformer surpasses current state-of-the-art single image rain streak removal methods on both synthetic and real-world datasets, achieving an improved balance between model complexity and single image deraining performance. Furthermore, we evaluate the effectiveness of our method in VBMS scenarios, demonstrating that high-quality imaging significantly improves the accuracy and reliability of VBMS tasks.
Abstract:Single-Image Super-Resolution (SISR) plays a pivotal role in enhancing the accuracy and reliability of measurement systems, which are integral to various vision-based instrumentation and measurement applications. These systems often require clear and detailed images for precise object detection and recognition. However, images captured by visual measurement tools frequently suffer from degradation, including blurring and loss of detail, which can impede measurement accuracy.As a potential remedy, we in this paper propose a Semantic-Guided Global-Local Collaborative Network (SGGLC-Net) for lightweight SISR. Our SGGLC-Net leverages semantic priors extracted from a pre-trained model to guide the super-resolution process, enhancing image detail quality effectively. Specifically,we propose a Semantic Guidance Module that seamlessly integrates the semantic priors into the super-resolution network, enabling the network to more adeptly capture and utilize semantic priors, thereby enhancing image details. To further explore both local and non-local interactions for improved detail rendition,we propose a Global-Local Collaborative Module, which features three Global and Local Detail Enhancement Modules, as well as a Hybrid Attention Mechanism to work together to efficiently learn more useful features. Our extensive experiments show that SGGLC-Net achieves competitive PSNR and SSIM values across multiple benchmark datasets, demonstrating higher performance with the multi-adds reduction of 12.81G compared to state-of-the-art lightweight super-resolution approaches. These improvements underscore the potential of our approach to enhance the precision and effectiveness of visual measurement systems. Codes are at https://github.com/fanamber831/SGGLC-Net.
Abstract:We propose Intra and Inter Parser-Prompted Transformers (PPTformer) that explore useful features from visual foundation models for image restoration. Specifically, PPTformer contains two parts: an Image Restoration Network (IRNet) for restoring images from degraded observations and a Parser-Prompted Feature Generation Network (PPFGNet) for providing IRNet with reliable parser information to boost restoration. To enhance the integration of the parser within IRNet, we propose Intra Parser-Prompted Attention (IntraPPA) and Inter Parser-Prompted Attention (InterPPA) to implicitly and explicitly learn useful parser features to facilitate restoration. The IntraPPA re-considers cross attention between parser and restoration features, enabling implicit perception of the parser from a long-range and intra-layer perspective. Conversely, the InterPPA initially fuses restoration features with those of the parser, followed by formulating these fused features within an attention mechanism to explicitly perceive parser information. Further, we propose a parser-prompted feed-forward network to guide restoration within pixel-wise gating modulation. Experimental results show that PPTformer achieves state-of-the-art performance on image deraining, defocus deblurring, desnowing, and low-light enhancement.
Abstract:Data Science tasks are multifaceted, dynamic, and often domain-specific. Existing LLM-based approaches largely concentrate on isolated phases, neglecting the interdependent nature of many data science tasks and limiting their capacity for comprehensive end-to-end support. We propose DatawiseAgent, a notebook-centric LLM agent framework that unifies interactions among user, agent and the computational environment through markdown and executable code cells, supporting flexible and adaptive automated data science. Built on a Finite State Transducer(FST), DatawiseAgent orchestrates four stages, including DSF-like planning, incremental execution, self-debugging, and post-filtering. Specifically, the DFS-like planning stage systematically explores the solution space, while incremental execution harnesses real-time feedback and accommodates LLM's limited capabilities to progressively complete tasks. The self-debugging and post-filtering modules further enhance reliability by diagnosing and correcting errors and pruning extraneous information. Extensive experiments on diverse tasks, including data analysis, visualization, and data modeling, show that DatawiseAgent consistently outperforms or matches state-of-the-art methods across multiple model settings. These results highlight its potential to generalize across data science scenarios and lay the groundwork for more efficient, fully automated workflows.
Abstract:Group Activity Understanding is predominantly studied as Group Activity Recognition (GAR) task. However, existing GAR benchmarks suffer from coarse-grained activity vocabularies and the only data form in single-view, which hinder the evaluation of state-of-the-art algorithms. To address these limitations, we introduce SGA-INTERACT, the first 3D skeleton-based benchmark for group activity understanding. It features complex activities inspired by basketball tactics, emphasizing rich spatial interactions and long-term dependencies. SGA-INTERACT introduces Temporal Group Activity Localization (TGAL) task, extending group activity understanding to untrimmed sequences, filling the gap left by GAR as a standalone task. In addition to the benchmark, we propose One2Many, a novel framework that employs a pretrained 3D skeleton backbone for unified individual feature extraction. This framework aligns with the feature extraction paradigm in RGB-based methods, enabling direct evaluation of RGB-based models on skeleton-based benchmarks. We conduct extensive evaluations on SGA-INTERACT using two skeleton-based methods, three RGB-based methods, and a proposed baseline within the One2Many framework. The general low performance of baselines highlights the benchmark's challenges, motivating advancements in group activity understanding.
Abstract:Large language models (LLMs) have achieved remarkable performance on knowledge graph question answering (KGQA) tasks by planning and interacting with knowledge graphs. However, existing methods often confuse tool utilization with knowledge reasoning, harming readability of model outputs and giving rise to hallucinatory tool invocations, which hinder the advancement of KGQA. To address this issue, we propose Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning (MemQ) to decouple LLM from tool invocation tasks using LLM-built query memory. By establishing a memory module with explicit descriptions of query statements, the proposed MemQ facilitates the KGQA process with natural language reasoning and memory-augmented query reconstruction. Meanwhile, we design an effective and readable reasoning to enhance the LLM's reasoning capability in KGQA. Experimental results that MemQ achieves state-of-the-art performance on widely used benchmarks WebQSP and CWQ.
Abstract:In MRI-based mental disorder diagnosis, most previous studies focus on functional connectivity network (FCN) derived from functional MRI (fMRI). However, the small size of annotated fMRI datasets restricts its wide application. Meanwhile, structural MRIs (sMRIs), such as 3D T1-weighted (T1w) MRI, which are commonly used and readily accessible in clinical settings, are often overlooked. To integrate the complementary information from both function and structure for improved diagnostic accuracy, we propose CINP (Contrastive Image-Network Pre-training), a framework that employs contrastive learning between sMRI and FCN. During pre-training, we incorporate masked image modeling and network-image matching to enhance visual representation learning and modality alignment. Since the CINP facilitates knowledge transfer from FCN to sMRI, we introduce network prompting. It utilizes only sMRI from suspected patients and a small amount of FCNs from different patient classes for diagnosing mental disorders, which is practical in real-world clinical scenario. The competitive performance on three mental disorder diagnosis tasks demonstrate the effectiveness of the CINP in integrating multimodal MRI information, as well as the potential of incorporating sMRI into clinical diagnosis using network prompting.
Abstract:Large Language Models (LLMs) face efficiency bottlenecks due to the quadratic complexity of the attention mechanism when processing long contexts. Sparse attention methods offer a promising solution, but existing approaches often suffer from incomplete effective context and/or require complex implementation of pipeline. We present a comprehensive analysis of sparse attention for autoregressive LLMs from the respective of receptive field, recognize the suboptimal nature of existing methods for expanding the receptive field, and introduce PowerAttention, a novel sparse attention design that facilitates effective and complete context extension through the theoretical analysis. PowerAttention achieves exponential receptive field growth in $d$-layer LLMs, allowing each output token to attend to $2^d$ tokens, ensuring completeness and continuity of the receptive field. Experiments demonstrate that PowerAttention outperforms existing static sparse attention methods by $5\sim 40\%$, especially on tasks demanding long-range dependencies like Passkey Retrieval and RULER, while maintaining a comparable time complexity to sliding window attention. Efficiency evaluations further highlight PowerAttention's superior speedup in both prefilling and decoding phases compared with dynamic sparse attentions and full attention ($3.0\times$ faster on 128K context), making it a highly effective and user-friendly solution for processing long sequences in LLMs.