Abstract:This study investigates the explainability of embedding representations, specifically those used in modern audio spoofing detection systems based on deep neural networks, known as spoof embeddings. Building on established work in speaker embedding explainability, we examine how well these spoof embeddings capture speaker-related information. We train simple neural classifiers using either speaker or spoof embeddings as input, with speaker-related attributes as target labels. These attributes are categorized into two groups: metadata-based traits (e.g., gender, age) and acoustic traits (e.g., fundamental frequency, speaking rate). Our experiments on the ASVspoof 2019 LA evaluation set demonstrate that spoof embeddings preserve several key traits, including gender, speaking rate, F0, and duration. Further analysis of gender and speaking rate indicates that the spoofing detector partially preserves these traits, potentially to ensure the decision process remains robust against them.
Abstract:Target speaker extraction (TSE) is essential in speech processing applications, particularly in scenarios with complex acoustic environments. Current TSE systems face challenges in limited data diversity and a lack of robustness in real-world conditions, primarily because they are trained on artificially mixed datasets with limited speaker variability and unrealistic noise profiles. To address these challenges, we propose Libri2Vox, a new dataset that combines clean target speech from the LibriTTS dataset with interference speech from the noisy VoxCeleb2 dataset, providing a large and diverse set of speakers under realistic noisy conditions. We also augment Libri2Vox with synthetic speakers generated using state-of-the-art speech generative models to enhance speaker diversity. Additionally, to further improve the effectiveness of incorporating synthetic data, curriculum learning is implemented to progressively train TSE models with increasing levels of difficulty. Extensive experiments across multiple TSE architectures reveal varying degrees of improvement, with SpeakerBeam demonstrating the most substantial gains: a 1.39 dB improvement in signal-to-distortion ratio (SDR) on the Libri2Talker test set compared to baseline training. Building upon these results, we further enhanced performance through our speaker similarity-based curriculum learning approach with the Conformer architecture, achieving an additional 0.78 dB improvement over conventional random sampling methods in which data samples are randomly selected from the entire dataset. These results demonstrate the complementary benefits of diverse real-world data, synthetic speaker augmentation, and structured training strategies in building robust TSE systems.
Abstract:Target speaker extraction (TSE) aims to isolate individual speaker voices from complex speech environments. The effectiveness of TSE systems is often compromised when the speaker characteristics are similar to each other. Recent research has introduced curriculum learning (CL), in which TSE models are trained incrementally on speech samples of increasing complexity. In CL training, the model is first trained on samples with low speaker similarity between the target and interference speakers, and then on samples with high speaker similarity. To further improve CL, this paper uses a $k$-nearest neighbor-based voice conversion method to simulate and generate speech of diverse interference speakers, and then uses the generated data as part of the CL. Experiments demonstrate that training data based on synthetic speakers can effectively enhance the model's capabilities and significantly improve the performance of multiple TSE systems.
Abstract:In this work, we present AfriHuBERT, an extension of mHuBERT-147, a state-of-the-art (SOTA) and compact self-supervised learning (SSL) model, originally pretrained on 147 languages. While mHuBERT-147 was pretrained on 16 African languages, we expand this to cover 39 African languages through continued pretraining on 6,500+ hours of speech data aggregated from diverse sources, including 23 newly added languages. We evaluate AfriHuBERT on two key speech tasks: Language Identification (LID) and Automatic Speech Recognition (ASR) using FLEURS dataset. Our results show a +4% F1 score improvement on average for LID and a -1.2% average Word Error Rate (WER) reduction for ASR. Further analysis shows that ASR models trained on AfriHuBERT exhibit improved cross-corpus generalization. Additionally, the analysis indicates that the FLEURS have data quality limitations that may affect their suitability for evaluating low-resource African languages, suggesting the need for better evaluation benchmarks for these languages.
Abstract:Voice conversion (VC) aims to modify the speaker's timbre while retaining speech content. Previous approaches have tokenized the outputs from self-supervised into semantic tokens, facilitating disentanglement of speech content information. Recently, in-context learning (ICL) has emerged in text-to-speech (TTS) systems for effectively modeling specific characteristics such as timbre through context conditioning. This paper proposes an ICL capability enhanced VC system (ICL-VC) employing a mask and reconstruction training strategy based on flow-matching generative models. Augmented with semantic tokens, our experiments on the LibriTTS dataset demonstrate that ICL-VC improves speaker similarity. Additionally, we find that k-means is a versatile tokenization method applicable to various pre-trained models. However, the ICL-VC system faces challenges in preserving the prosody of the source speech. To mitigate this issue, we propose incorporating prosody embeddings extracted from a pre-trained emotion recognition model into our system. Integration of prosody embeddings notably enhances the system's capability to preserve source speech prosody, as validated on the Emotional Speech Database.
Abstract:Audio spoofing detection has become increasingly important due to the rise in real-world cases. Current spoofing detectors, referred to as spoofing countermeasures (CM), are mainly trained and focused on audio waveforms with a single speaker and short duration. This study explores spoofing detection in more realistic scenarios, where the audio is long in duration and features multiple speakers and complex acoustic conditions. We test the widely-acquired AASIST under this challenging scenario, looking at the impact of multiple variations such as duration, speaker presence, and acoustic complexities on CM performance. Our work reveals key issues with current methods and suggests preliminary ways to improve them. We aim to make spoofing detection more applicable in more in-the-wild scenarios. This research is served as an important step towards developing detection systems that can handle the challenges of audio spoofing in real-world applications.
Abstract:ASVspoof 5 is the fifth edition in a series of challenges that promote the study of speech spoofing and deepfake attacks, and the design of detection solutions. Compared to previous challenges, the ASVspoof 5 database is built from crowdsourced data collected from a vastly greater number of speakers in diverse acoustic conditions. Attacks, also crowdsourced, are generated and tested using surrogate detection models, while adversarial attacks are incorporated for the first time. New metrics support the evaluation of spoofing-robust automatic speaker verification (SASV) as well as stand-alone detection solutions, i.e., countermeasures without ASV. We describe the two challenge tracks, the new database, the evaluation metrics, baselines, and the evaluation platform, and present a summary of the results. Attacks significantly compromise the baseline systems, while submissions bring substantial improvements.
Abstract:SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech recognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete "recipes" of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks
Abstract:This paper proposes a speech synthesis system that allows users to specify and control the acoustic characteristics of a speaker by means of prompts describing the speaker's traits of synthesized speech. Unlike previous approaches, our method utilizes listener impressions to construct prompts, which are easier to collect and align more naturally with everyday descriptions of speaker traits. We adopt the Low-rank Adaptation (LoRA) technique to swiftly tailor a pre-trained language model to our needs, facilitating the extraction of speaker-related traits from the prompt text. Besides, different from other prompt-driven text-to-speech (TTS) systems, we separate the prompt-to-speaker module from the multi-speaker TTS system, enhancing system flexibility and compatibility with various pre-trained multi-speaker TTS systems. Moreover, for the prompt-to-speaker characteristic module, we also compared the discriminative method and flow-matching based generative method and we found that combining both methods can help the system simultaneously capture speaker-related information from prompts better and generate speech with higher fidelity.
Abstract:This paper presents a novel approach to target speaker extraction (TSE) using Curriculum Learning (CL) techniques, addressing the challenge of distinguishing a target speaker's voice from a mixture containing interfering speakers. For efficient training, we propose designing a curriculum that selects subsets of increasing complexity, such as increasing similarity between target and interfering speakers, and that selects training data strategically. Our CL strategies include both variants using predefined difficulty measures (e.g. gender, speaker similarity, and signal-to-distortion ratio) and ones using the TSE's standard objective function, each designed to expose the model gradually to more challenging scenarios. Comprehensive testing on the Libri2talker dataset demonstrated that our CL strategies for TSE improved the performance, and the results markedly exceeded baseline models without CL about 1 dB.