Abstract:This paper presents an integrated system that transforms symbolic music scores into expressive piano performance audio. By combining a Transformer-based Expressive Performance Rendering (EPR) model with a fine-tuned neural MIDI synthesiser, our approach directly generates expressive audio performances from score inputs. To the best of our knowledge, this is the first system to offer a streamlined method for converting score MIDI files lacking expression control into rich, expressive piano performances. We conducted experiments using subsets of the ATEPP dataset, evaluating the system with both objective metrics and subjective listening tests. Our system not only accurately reconstructs human-like expressiveness, but also captures the acoustic ambience of environments such as concert halls and recording studios. Additionally, the proposed system demonstrates its ability to achieve musical expressiveness while ensuring good audio quality in its outputs.
Abstract:This study investigates the explainability of embedding representations, specifically those used in modern audio spoofing detection systems based on deep neural networks, known as spoof embeddings. Building on established work in speaker embedding explainability, we examine how well these spoof embeddings capture speaker-related information. We train simple neural classifiers using either speaker or spoof embeddings as input, with speaker-related attributes as target labels. These attributes are categorized into two groups: metadata-based traits (e.g., gender, age) and acoustic traits (e.g., fundamental frequency, speaking rate). Our experiments on the ASVspoof 2019 LA evaluation set demonstrate that spoof embeddings preserve several key traits, including gender, speaking rate, F0, and duration. Further analysis of gender and speaking rate indicates that the spoofing detector partially preserves these traits, potentially to ensure the decision process remains robust against them.
Abstract:Target speaker extraction (TSE) is essential in speech processing applications, particularly in scenarios with complex acoustic environments. Current TSE systems face challenges in limited data diversity and a lack of robustness in real-world conditions, primarily because they are trained on artificially mixed datasets with limited speaker variability and unrealistic noise profiles. To address these challenges, we propose Libri2Vox, a new dataset that combines clean target speech from the LibriTTS dataset with interference speech from the noisy VoxCeleb2 dataset, providing a large and diverse set of speakers under realistic noisy conditions. We also augment Libri2Vox with synthetic speakers generated using state-of-the-art speech generative models to enhance speaker diversity. Additionally, to further improve the effectiveness of incorporating synthetic data, curriculum learning is implemented to progressively train TSE models with increasing levels of difficulty. Extensive experiments across multiple TSE architectures reveal varying degrees of improvement, with SpeakerBeam demonstrating the most substantial gains: a 1.39 dB improvement in signal-to-distortion ratio (SDR) on the Libri2Talker test set compared to baseline training. Building upon these results, we further enhanced performance through our speaker similarity-based curriculum learning approach with the Conformer architecture, achieving an additional 0.78 dB improvement over conventional random sampling methods in which data samples are randomly selected from the entire dataset. These results demonstrate the complementary benefits of diverse real-world data, synthetic speaker augmentation, and structured training strategies in building robust TSE systems.
Abstract:Conversational scenarios are very common in real-world settings, yet existing co-speech motion synthesis approaches often fall short in these contexts, where one person's audio and gestures will influence the other's responses. Additionally, most existing methods rely on offline sequence-to-sequence frameworks, which are unsuitable for online applications. In this work, we introduce an audio-driven, auto-regressive system designed to synthesize dynamic movements for two characters during a conversation. At the core of our approach is a diffusion-based full-body motion synthesis model, which is conditioned on the past states of both characters, speech audio, and a task-oriented motion trajectory input, allowing for flexible spatial control. To enhance the model's ability to learn diverse interactions, we have enriched existing two-person conversational motion datasets with more dynamic and interactive motions. We evaluate our system through multiple experiments to show it outperforms across a variety of tasks, including single and two-person co-speech motion generation, as well as interactive motion generation. To the best of our knowledge, this is the first system capable of generating interactive full-body motions for two characters from speech in an online manner.
Abstract:The First VoicePrivacy Attacker Challenge is a new kind of challenge organized as part of the VoicePrivacy initiative and supported by ICASSP 2025 as the SP Grand Challenge It focuses on developing attacker systems against voice anonymization, which will be evaluated against a set of anonymization systems submitted to the VoicePrivacy 2024 Challenge. Training, development, and evaluation datasets are provided along with a baseline attacker system. Participants shall develop their attacker systems in the form of automatic speaker verification systems and submit their scores on the development and evaluation data to the organizers. To do so, they can use any additional training data and models, provided that they are openly available and declared before the specified deadline. The metric for evaluation is equal error rate (EER). Results will be presented at the ICASSP 2025 special session to which 5 selected top-ranked participants will be invited to submit and present their challenge systems.
Abstract:In this work, we present AfriHuBERT, an extension of mHuBERT-147, a state-of-the-art (SOTA) and compact self-supervised learning (SSL) model, originally pretrained on 147 languages. While mHuBERT-147 was pretrained on 16 African languages, we expand this to cover 39 African languages through continued pretraining on 6,500+ hours of speech data aggregated from diverse sources, including 23 newly added languages. We evaluate AfriHuBERT on two key speech tasks: Language Identification (LID) and Automatic Speech Recognition (ASR) using FLEURS dataset. Our results show a +4% F1 score improvement on average for LID and a -1.2% average Word Error Rate (WER) reduction for ASR. Further analysis shows that ASR models trained on AfriHuBERT exhibit improved cross-corpus generalization. Additionally, the analysis indicates that the FLEURS have data quality limitations that may affect their suitability for evaluating low-resource African languages, suggesting the need for better evaluation benchmarks for these languages.
Abstract:We present the third edition of the VoiceMOS Challenge, a scientific initiative designed to advance research into automatic prediction of human speech ratings. There were three tracks. The first track was on predicting the quality of ``zoomed-in'' high-quality samples from speech synthesis systems. The second track was to predict ratings of samples from singing voice synthesis and voice conversion with a large variety of systems, listeners, and languages. The third track was semi-supervised quality prediction for noisy, clean, and enhanced speech, where a very small amount of labeled training data was provided. Among the eight teams from both academia and industry, we found that many were able to outperform the baseline systems. Successful techniques included retrieval-based methods and the use of non-self-supervised representations like spectrograms and pitch histograms. These results showed that the challenge has advanced the field of subjective speech rating prediction.
Abstract:In real-world applications, it is challenging to build a speaker verification system that is simultaneously robust against common threats, including spoofing attacks, channel mismatch, and domain mismatch. Traditional automatic speaker verification (ASV) systems often tackle these issues separately, leading to suboptimal performance when faced with simultaneous challenges. In this paper, we propose an integrated framework that incorporates pair-wise learning and spoofing attack simulation into the meta-learning paradigm to enhance robustness against these multifaceted threats. This novel approach employs an asymmetric dual-path model and a multi-task learning strategy to handle ASV, anti-spoofing, and spoofing-aware ASV tasks concurrently. A new testing dataset, CNComplex, is introduced to evaluate system performance under these combined threats. Experimental results demonstrate that our integrated model significantly improves performance over traditional ASV systems across various scenarios, showcasing its potential for real-world deployment. Additionally, the proposed framework's ability to generalize across different conditions highlights its robustness and reliability, making it a promising solution for practical ASV applications.
Abstract:Voice conversion (VC) aims to modify the speaker's timbre while retaining speech content. Previous approaches have tokenized the outputs from self-supervised into semantic tokens, facilitating disentanglement of speech content information. Recently, in-context learning (ICL) has emerged in text-to-speech (TTS) systems for effectively modeling specific characteristics such as timbre through context conditioning. This paper proposes an ICL capability enhanced VC system (ICL-VC) employing a mask and reconstruction training strategy based on flow-matching generative models. Augmented with semantic tokens, our experiments on the LibriTTS dataset demonstrate that ICL-VC improves speaker similarity. Additionally, we find that k-means is a versatile tokenization method applicable to various pre-trained models. However, the ICL-VC system faces challenges in preserving the prosody of the source speech. To mitigate this issue, we propose incorporating prosody embeddings extracted from a pre-trained emotion recognition model into our system. Integration of prosody embeddings notably enhances the system's capability to preserve source speech prosody, as validated on the Emotional Speech Database.
Abstract:Audio spoofing detection has become increasingly important due to the rise in real-world cases. Current spoofing detectors, referred to as spoofing countermeasures (CM), are mainly trained and focused on audio waveforms with a single speaker and short duration. This study explores spoofing detection in more realistic scenarios, where the audio is long in duration and features multiple speakers and complex acoustic conditions. We test the widely-acquired AASIST under this challenging scenario, looking at the impact of multiple variations such as duration, speaker presence, and acoustic complexities on CM performance. Our work reveals key issues with current methods and suggests preliminary ways to improve them. We aim to make spoofing detection more applicable in more in-the-wild scenarios. This research is served as an important step towards developing detection systems that can handle the challenges of audio spoofing in real-world applications.