Abstract:Autoregressive models are typically applied to sequences of discrete tokens, but recent research indicates that generating sequences of continuous embeddings in an autoregressive manner is also feasible. However, such Continuous Autoregressive Models (CAMs) can suffer from a decline in generation quality over extended sequences due to error accumulation during inference. We introduce a novel method to address this issue by injecting random noise into the input embeddings during training. This procedure makes the model robust against varying error levels at inference. We further reduce error accumulation through an inference procedure that introduces low-level noise. Experiments on musical audio generation show that CAM substantially outperforms existing autoregressive and non-autoregressive approaches while preserving audio quality over extended sequences. This work paves the way for generating continuous embeddings in a purely autoregressive setting, opening new possibilities for real-time and interactive generative applications.
Abstract:The generation of handwritten music sheets is a crucial step toward enhancing Optical Music Recognition (OMR) systems, which rely on large and diverse datasets for optimal performance. However, handwritten music sheets, often found in archives, present challenges for digitisation due to their fragility, varied handwriting styles, and image quality. This paper addresses the data scarcity problem by applying Generative Adversarial Networks (GANs) to synthesise realistic handwritten music sheets. We provide a comprehensive evaluation of three GAN models - DCGAN, ProGAN, and CycleWGAN - comparing their ability to generate diverse and high-quality handwritten music images. The proposed CycleWGAN model, which enhances style transfer and training stability, significantly outperforms DCGAN and ProGAN in both qualitative and quantitative evaluations. CycleWGAN achieves superior performance, with an FID score of 41.87, an IS of 2.29, and a KID of 0.05, making it a promising solution for improving OMR systems.
Abstract:In this paper, we explore the intersection of technology and cultural preservation by developing a self-supervised learning framework for the classification of musical symbols in historical manuscripts. Optical Music Recognition (OMR) plays a vital role in digitising and preserving musical heritage, but historical documents often lack the labelled data required by traditional methods. We overcome this challenge by training a neural-based feature extractor on unlabelled data, enabling effective classification with minimal samples. Key contributions include optimising crop preprocessing for a self-supervised Convolutional Neural Network and evaluating classification methods, including SVM, multilayer perceptrons, and prototypical networks. Our experiments yield an accuracy of 87.66\%, showcasing the potential of AI-driven methods to ensure the survival of historical music for future generations through advanced digital archiving techniques.
Abstract:In our demo, participants are invited to explore the Diff-MSTC prototype, which integrates the Diff-MST model into Steinberg's digital audio workstation (DAW), Cubase. Diff-MST, a deep learning model for mixing style transfer, forecasts mixing console parameters for tracks using a reference song. The system processes up to 20 raw tracks along with a reference song to predict mixing console parameters that can be used to create an initial mix. Users have the option to manually adjust these parameters further for greater control. In contrast to earlier deep learning systems that are limited to research ideas, Diff-MSTC is a first-of-its-kind prototype integrated into a DAW. This integration facilitates mixing decisions on multitracks and lets users input context through a reference song, followed by fine-tuning of audio effects in a traditional manner.
Abstract:Optical Music Recognition (OMR) automates the transcription of musical notation from images into machine-readable formats like MusicXML, MEI, or MIDI, significantly reducing the costs and time of manual transcription. This study explores knowledge discovery in OMR by applying instance segmentation using Mask R-CNN to enhance the detection and delineation of musical symbols in sheet music. Unlike Optical Character Recognition (OCR), OMR must handle the intricate semantics of Common Western Music Notation (CWMN), where symbol meanings depend on shape, position, and context. Our approach leverages instance segmentation to manage the density and overlap of musical symbols, facilitating more precise information retrieval from music scores. Evaluations on the DoReMi and MUSCIMA++ datasets demonstrate substantial improvements, with our method achieving a mean Average Precision (mAP) of up to 59.70\% in dense symbol environments, achieving comparable results to object detection. Furthermore, using traditional computer vision techniques, we add a parallel step for staff detection to infer the pitch for the recognised symbols. This study emphasises the role of pixel-wise segmentation in advancing accurate music symbol recognition, contributing to knowledge discovery in OMR. Our findings indicate that instance segmentation provides more precise representations of musical symbols, particularly in densely populated scores, advancing OMR technology. We make our implementation, pre-processing scripts, trained models, and evaluation results publicly available to support further research and development.
Abstract:Efficient audio representations in a compressed continuous latent space are critical for generative audio modeling and Music Information Retrieval (MIR) tasks. However, some existing audio autoencoders have limitations, such as multi-stage training procedures, slow iterative sampling, or low reconstruction quality. We introduce Music2Latent, an audio autoencoder that overcomes these limitations by leveraging consistency models. Music2Latent encodes samples into a compressed continuous latent space in a single end-to-end training process while enabling high-fidelity single-step reconstruction. Key innovations include conditioning the consistency model on upsampled encoder outputs at all levels through cross connections, using frequency-wise self-attention to capture long-range frequency dependencies, and employing frequency-wise learned scaling to handle varying value distributions across frequencies at different noise levels. We demonstrate that Music2Latent outperforms existing continuous audio autoencoders in sound quality and reconstruction accuracy while achieving competitive performance on downstream MIR tasks using its latent representations. To our knowledge, this represents the first successful attempt at training an end-to-end consistency autoencoder model.
Abstract:Multimodal models that jointly process audio and language hold great promise in audio understanding and are increasingly being adopted in the music domain. By allowing users to query via text and obtain information about a given audio input, these models have the potential to enable a variety of music understanding tasks via language-based interfaces. However, their evaluation poses considerable challenges, and it remains unclear how to effectively assess their ability to correctly interpret music-related inputs with current methods. Motivated by this, we introduce MuChoMusic, a benchmark for evaluating music understanding in multimodal language models focused on audio. MuChoMusic comprises 1,187 multiple-choice questions, all validated by human annotators, on 644 music tracks sourced from two publicly available music datasets, and covering a wide variety of genres. Questions in the benchmark are crafted to assess knowledge and reasoning abilities across several dimensions that cover fundamental musical concepts and their relation to cultural and functional contexts. Through the holistic analysis afforded by the benchmark, we evaluate five open-source models and identify several pitfalls, including an over-reliance on the language modality, pointing to a need for better multimodal integration. Data and code are open-sourced.
Abstract:Mixing style transfer automates the generation of a multitrack mix for a given set of tracks by inferring production attributes from a reference song. However, existing systems for mixing style transfer are limited in that they often operate only on a fixed number of tracks, introduce artifacts, and produce mixes in an end-to-end fashion, without grounding in traditional audio effects, prohibiting interpretability and controllability. To overcome these challenges, we introduce Diff-MST, a framework comprising a differentiable mixing console, a transformer controller, and an audio production style loss function. By inputting raw tracks and a reference song, our model estimates control parameters for audio effects within a differentiable mixing console, producing high-quality mixes and enabling post-hoc adjustments. Moreover, our architecture supports an arbitrary number of input tracks without source labelling, enabling real-world applications. We evaluate our model's performance against robust baselines and showcase the effectiveness of our approach, architectural design, tailored audio production style loss, and innovative training methodology for the given task.
Abstract:Music source separation is focused on extracting distinct sonic elements from composite tracks. Historically, many methods have been grounded in supervised learning, necessitating labeled data, which is occasionally constrained in its diversity. More recent methods have delved into N-shot techniques that utilize one or more audio samples to aid in the separation. However, a challenge with some of these methods is the necessity for an audio query during inference, making them less suited for genres with varied timbres and effects. This paper offers a proof-of-concept for a self-supervised music source separation system that eliminates the need for audio queries at inference time. In the training phase, while it adopts a query-based approach, we introduce a modification by substituting the continuous embedding of query audios with Vector Quantized (VQ) representations. Trained end-to-end with up to N classes as determined by the VQ's codebook size, the model seeks to effectively categorise instrument classes. During inference, the input is partitioned into N sources, with some potentially left unutilized based on the mix's instrument makeup. This methodology suggests an alternative avenue for considering source separation across diverse music genres. We provide examples and additional results online.
Abstract:Although the design and application of audio effects is well understood, the inverse problem of removing these effects is significantly more challenging and far less studied. Recently, deep learning has been applied to audio effect removal; however, existing approaches have focused on narrow formulations considering only one effect or source type at a time. In realistic scenarios, multiple effects are applied with varying source content. This motivates a more general task, which we refer to as general purpose audio effect removal. We developed a dataset for this task using five audio effects across four different sources and used it to train and evaluate a set of existing architectures. We found that no single model performed optimally on all effect types and sources. To address this, we introduced RemFX, an approach designed to mirror the compositionality of applied effects. We first trained a set of the best-performing effect-specific removal models and then leveraged an audio effect classification model to dynamically construct a graph of our models at inference. We found our approach to outperform single model baselines, although examples with many effects present remain challenging.