Jeff
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Multivariate time series underpin modern critical infrastructure, making the prediction of anomalies a vital necessity for proactive risk mitigation. While Joint-Embedding Predictive Architectures (JEPA) offer a promising framework for modeling the latent evolution of these systems, their application is hindered by representation collapse and an inability to capture precursor signals across varying temporal scales. To address these limitations, we propose MTS-JEPA, a specialized architecture that integrates a multi-resolution predictive objective with a soft codebook bottleneck. This design explicitly decouples transient shocks from long-term trends, and utilizes the codebook to capture discrete regime transitions. Notably, we find this constraint also acts as an intrinsic regularizer to ensure optimization stability. Empirical evaluations on standard benchmarks confirm that our approach effectively prevents degenerate solutions and achieves state-of-the-art performance under the early-warning protocol.
Abstract:Embodied Artificial Intelligence (AI) is an intelligent system formed by agents and their environment through active perception, embodied cognition, and action interaction. Existing embodied AI remains confined to human-crafted setting, in which agents are trained on given memory and construct models for given tasks, enabling fixed embodiments to interact with relatively static environments. Such methods fail in in-the-wild setting characterized by variable embodiments and dynamic open environments. This paper introduces self-evolving embodied AI, a new paradigm in which agents operate based on their changing state and environment with memory self-updating, task self-switching, environment self-prediction, embodiment self-adaptation, and model self-evolution, aiming to achieve continually adaptive intelligence with autonomous evolution. Specifically, we present the definition, framework, components, and mechanisms of self-evolving embodied AI, systematically review state-of-the-art works for realized components, discuss practical applications, and point out future research directions. We believe that self-evolving embodied AI enables agents to autonomously learn and interact with environments in a human-like manner and provide a new perspective toward general artificial intelligence.
Abstract:Multi-agent debate can improve reasoning quality and reduce hallucinations, but it incurs rapidly growing context as debate rounds and agent count increase. Retaining full textual histories leads to token usage that can exceed context limits and often requires repeated summarization, adding overhead and compounding information loss. We introduce DebateOCR, a cross-modal compression framework that replaces long textual debate traces with compact image representations, which are then consumed through a dedicated vision encoder to condition subsequent rounds. This design compresses histories that commonly span tens to hundreds of thousands of tokens, cutting input tokens by more than 92% and yielding substantially lower compute cost and faster inference across multiple benchmarks. We further provide a theoretical perspective showing that diversity across agents supports recovery of omitted information: although any single compressed history may discard details, aggregating multiple agents' compressed views allows the collective representation to approach the information bottleneck with exponentially high probability.
Abstract:Audio watermarking embeds auxiliary information into speech while maintaining speaker identity, linguistic content, and perceptual quality. Although recent advances in neural and digital signal processing-based watermarking methods have improved imperceptibility and embedding capacity, robustness is still primarily assessed against conventional distortions such as compression, additive noise, and resampling. However, the rise of deep learning-based attacks introduces novel and significant threats to watermark security. In this work, we investigate self voice conversion as a universal, content-preserving attack against audio watermarking systems. Self voice conversion remaps a speaker's voice to the same identity while altering acoustic characteristics through a voice conversion model. We demonstrate that this attack severely degrades the reliability of state-of-the-art watermarking approaches and highlight its implications for the security of modern audio watermarking techniques.
Abstract:Graphs are a fundamental data structure for representing relational information in domains such as social networks, molecular systems, and knowledge graphs. However, graph learning models often suffer from limited generalization when applied beyond their training distributions. In practice, distribution shifts may arise from changes in graph structure, domain semantics, available modalities, or task formulations. To address these challenges, graph foundation models (GFMs) have recently emerged, aiming to learn general-purpose representations through large-scale pretraining across diverse graphs and tasks. In this survey, we review recent progress on GFMs from the perspective of out-of-distribution (OOD) generalization. We first discuss the main challenges posed by distribution shifts in graph learning and outline a unified problem setting. We then organize existing approaches based on whether they are designed to operate under a fixed task specification or to support generalization across heterogeneous task formulations, and summarize the corresponding OOD handling strategies and pretraining objectives. Finally, we review common evaluation protocols and discuss open directions for future research. To the best of our knowledge, this paper is the first survey for OOD generalization in GFMs.
Abstract:The scalability of embodied intelligence is fundamentally constrained by the scarcity of real-world interaction data. While simulation platforms provide a promising alternative, existing approaches often suffer from a substantial visual and physical gap to real environments and rely on expensive sensors, precise robot calibration, or depth measurements, limiting their practicality at scale. We present Simulate Anything, a graphics-driven world modeling and simulation framework that enables efficient generation of high-fidelity embodied training data using only multi-view environment videos and off-the-shelf assets. Our approach reconstructs real-world environments into a photorealistic scene representation using 3D Gaussian Splatting (3DGS), seamlessly capturing fine-grained geometry and appearance from video. We then leverage generative models to recover a physically realistic representation and integrate it into a simulation environment via a precision calibration target, enabling accurate scale alignment between the reconstructed scene and the real world. Together, these components provide a unified, editable, and physically grounded world model. Vision Language Action (VLA) models trained on our simulated data achieve strong zero-shot performance on downstream tasks, matching or even surpassing results obtained with real-world data, highlighting the potential of reconstruction-driven world modeling for scalable and practical embodied intelligence training.
Abstract:The advances in generative AI have enabled the creation of synthetic audio which is perceptually indistinguishable from real, genuine audio. Although this stellar progress enables many positive applications, it also raises risks of misuse, such as for impersonation, disinformation and fraud. Despite a growing number of open-source fake audio detection codes released through numerous challenges and initiatives, most are tailored to specific competitions, datasets or models. A standardized and unified toolkit that supports the fair benchmarking and comparison of competing solutions with not just common databases, protocols, metrics, but also a shared codebase, is missing. To address this, we propose WeDefense, the first open-source toolkit to support both fake audio detection and localization. Beyond model training, WeDefense emphasizes critical yet often overlooked components: flexible input and augmentation, calibration, score fusion, standardized evaluation metrics, and analysis tools for deeper understanding and interpretation. The toolkit is publicly available at https://github.com/zlin0/wedefense with interactive demos for fake audio detection and localization.
Abstract:Deep Research Agents (DRAs) generate citation-rich reports via multi-step search and synthesis, yet existing benchmarks mainly target text-only settings or short-form multimodal QA, missing end-to-end multimodal evidence use. We introduce MMDeepResearch-Bench (MMDR-Bench), a benchmark of 140 expert-crafted tasks across 21 domains, where each task provides an image-text bundle to evaluate multimodal understanding and citation-grounded report generation. Compared to prior setups, MMDR-Bench emphasizes report-style synthesis with explicit evidence use, where models must connect visual artifacts to sourced claims and maintain consistency across narrative, citations, and visual references. We further propose a unified, interpretable evaluation pipeline: Formula-LLM Adaptive Evaluation (FLAE) for report quality, Trustworthy Retrieval-Aligned Citation Evaluation (TRACE) for citation-grounded evidence alignment, and Multimodal Support-Aligned Integrity Check (MOSAIC) for text-visual integrity, each producing fine-grained signals that support error diagnosis beyond a single overall score. Experiments across 25 state-of-the-art models reveal systematic trade-offs between generation quality, citation discipline, and multimodal grounding, highlighting that strong prose alone does not guarantee faithful evidence use and that multimodal integrity remains a key bottleneck for deep research agents.
Abstract:Image retrieval is a critical step for alleviating the quadratic complexity of image matching in unconstrained Structure-from-Motion (SfM). However, in this context, image retrieval typically focuses more on the image pairs of geometric matchability than on those of semantic similarity, a nuance that most existing deep learning-based methods guided by batched binaries (overlapping vs. non-overlapping pairs) fail to capture. In this paper, we introduce SupScene, a novel solution that learns global descriptors tailored for finding overlapping image pairs of similar geometric nature for SfM. First, to better underline co-visible regions, we employ a subgraph-based training strategy that moves beyond equally important isolated pairs, leveraging ground-truth geometric overlapping relationships with various weights to provide fine-grained supervision via a soft supervised contrastive loss. Second, we introduce DiVLAD, a DINO-inspired VLAD aggregator that leverages the inherent multi-head attention maps from the last block of ViT. And then, a learnable gating mechanism is designed to adaptively utilize these semantically salient cues with visual features, enabling a more discriminative global descriptor. Extensive experiments on the GL3D dataset demonstrate that our method achieves state-of-the-art performance, significantly outperforming NetVLAD while introducing a negligible number of additional trainable parameters. Furthermore, we show that the proposed training strategy brings consistent gains across different aggregation techniques. Code and models are available at https://anonymous.4open.science/r/SupScene-5B73.