Abstract:During pre-training, the Text-to-Image (T2I) diffusion models encode factual knowledge into their parameters. These parameterized facts enable realistic image generation, but they may become obsolete over time, thereby misrepresenting the current state of the world. Knowledge editing techniques aim to update model knowledge in a targeted way. However, facing the dual challenges posed by inadequate editing datasets and unreliable evaluation criterion, the development of T2I knowledge editing encounter difficulties in effectively generalizing injected knowledge. In this work, we design a T2I knowledge editing framework by comprehensively spanning on three phases: First, we curate a dataset \textbf{CAKE}, comprising paraphrase and multi-object test, to enable more fine-grained assessment on knowledge generalization. Second, we propose a novel criterion, \textbf{adaptive CLIP threshold}, to effectively filter out false successful images under the current criterion and achieve reliable editing evaluation. Finally, we introduce \textbf{MPE}, a simple but effective approach for T2I knowledge editing. Instead of tuning parameters, MPE precisely recognizes and edits the outdated part of the conditioning text-prompt to accommodate the up-to-date knowledge. A straightforward implementation of MPE (Based on in-context learning) exhibits better overall performance than previous model editors. We hope these efforts can further promote faithful evaluation of T2I knowledge editing methods.
Abstract:To build safe and reliable graph machine learning systems, unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection (GLOD) have received significant attention in recent years. Though those two lines of research indeed share the same objective, they have been studied independently in the community due to distinct evaluation setups, creating a gap that hinders the application and evaluation of methods from one to the other. To bridge the gap, in this work, we present a Unified Benchmark for unsupervised Graph-level OOD and anomaly Detection (our method), a comprehensive evaluation framework that unifies GLAD and GLOD under the concept of generalized graph-level OOD detection. Our benchmark encompasses 35 datasets spanning four practical anomaly and OOD detection scenarios, facilitating the comparison of 16 representative GLAD/GLOD methods. We conduct multi-dimensional analyses to explore the effectiveness, generalizability, robustness, and efficiency of existing methods, shedding light on their strengths and limitations. Furthermore, we provide an open-source codebase (https://github.com/UB-GOLD/UB-GOLD) of our method to foster reproducible research and outline potential directions for future investigations based on our insights.
Abstract:Social recommendation models weave social interactions into their design to provide uniquely personalized recommendation results for users. However, social networks not only amplify the popularity bias in recommendation models, resulting in more frequent recommendation of hot items and fewer long-tail items, but also include a substantial amount of redundant information that is essentially meaningless for the model's performance. Existing social recommendation models fail to address the issues of popularity bias and the redundancy of social information, as they directly characterize social influence across the entire social network without making targeted adjustments. In this paper, we propose a Condition-Guided Social Recommendation Model (named CGSoRec) to mitigate the model's popularity bias by denoising the social network and adjusting the weights of user's social preferences. More specifically, CGSoRec first includes a Condition-Guided Social Denoising Model (CSD) to remove redundant social relations in the social network for capturing users' social preferences with items more precisely. Then, CGSoRec calculates users' social preferences based on denoised social network and adjusts the weights in users' social preferences to make them can counteract the popularity bias present in the recommendation model. At last, CGSoRec includes a Condition-Guided Diffusion Recommendation Model (CGD) to introduce the adjusted social preferences as conditions to control the recommendation results for a debiased direction. Comprehensive experiments on three real-world datasets demonstrate the effectiveness of our proposed method. The code is in: https://github.com/hexin5515/CGSoRec.
Abstract:Graph neural networks (GNNs) have exhibited prominent performance in learning graph-structured data. Considering node classification task, based on the i.i.d assumption among node labels, the traditional supervised learning simply sums up cross-entropy losses of the independent training nodes and applies the average loss to optimize GNNs' weights. But different from other data formats, the nodes are naturally connected. It is found that the independent distribution modeling of node labels restricts GNNs' capability to generalize over the entire graph and defend adversarial attacks. In this work, we propose a new framework, termed joint-cluster supervised learning, to model the joint distribution of each node with its corresponding cluster. We learn the joint distribution of node and cluster labels conditioned on their representations, and train GNNs with the obtained joint loss. In this way, the data-label reference signals extracted from the local cluster explicitly strengthen the discrimination ability on the target node. The extensive experiments demonstrate that our joint-cluster supervised learning can effectively bolster GNNs' node classification accuracy. Furthermore, being benefited from the reference signals which may be free from spiteful interference, our learning paradigm significantly protects the node classification from being affected by the adversarial attack.
Abstract:In recent years, heterogeneous graph neural networks (HGNNs) have achieved excellent performance in handling heterogeneous information networks (HINs). Curriculum learning is a machine learning strategy where training examples are presented to a model in a structured order, starting with easy examples and gradually increasing difficulty, aiming to improve learning efficiency and generalization. To better exploit the rich information in HINs, previous methods have started to explore the use of curriculum learning strategy to train HGNNs. Specifically, these works utilize the absolute value of the loss at each training epoch to evaluate the learning difficulty of each training sample. However, the relative loss, rather than the absolute value of loss, reveals the learning difficulty. Therefore, we propose a novel loss-decrease-aware training schedule (LDTS). LDTS uses the trend of loss decrease between each training epoch to better evaluating the difficulty of training samples, thereby enhancing the curriculum learning of HGNNs for downstream tasks. Additionally, we propose a sampling strategy to alleviate training imbalance issues. Our method further demonstrate the efficacy of curriculum learning in enhancing HGNNs capabilities. We call our method Loss-decrease-aware Heterogeneous Graph Neural Networks (LDHGNN). The code is public at https://github.com/wangyili00/LDHGNN.
Abstract:The open-world test dataset is often mixed with out-of-distribution (OOD) samples, where the deployed models will struggle to make accurate predictions. Traditional detection methods need to trade off OOD detection and in-distribution (ID) classification performance since they share the same representation learning model. In this work, we propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs. Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection. Although it is conceptually simple, extending this vanilla framework to practical detection applications is still limited by two significant challenges. First, the popular similarity metrics based on Euclidian distance fail to consider the complex graph structure. Second, the generative model involving iterative denoising steps is time-consuming especially when it runs on the enormous pool of drugs. To address these challenges, our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations: i) An effective metric to comprehensively quantify the matching degree of input and reconstructed molecules; ii) A creative graph generator to construct prototypical graphs that are in line with ID but away from OOD; iii) An efficient and scalable OOD detector to compare the similarity between test samples and pre-constructed prototypical graphs and omit the generative process on every new molecule. Extensive experiments on ten benchmark datasets and six baselines are conducted to demonstrate our superiority.
Abstract:There is growing interest in generating skeleton-based human motions from natural language descriptions. While most efforts have focused on developing better neural architectures for this task, there has been no significant work on determining the proper evaluation metric. Human evaluation is the ultimate accuracy measure for this task, and automated metrics should correlate well with human quality judgments. Since descriptions are compatible with many motions, determining the right metric is critical for evaluating and designing effective generative models. This paper systematically studies which metrics best align with human evaluations and proposes new metrics that align even better. Our findings indicate that none of the metrics currently used for this task show even a moderate correlation with human judgments on a sample level. However, for assessing average model performance, commonly used metrics such as R-Precision and less-used coordinate errors show strong correlations. Additionally, several recently developed metrics are not recommended due to their low correlation compared to alternatives. We also introduce a novel metric based on a multimodal BERT-like model, MoBERT, which offers strongly human-correlated sample-level evaluations while maintaining near-perfect model-level correlation. Our results demonstrate that this new metric exhibits extensive benefits over all current alternatives.
Abstract:Reference-based image super-resolution (RefSR) is a promising SR branch and has shown great potential in overcoming the limitations of single image super-resolution. While previous state-of-the-art RefSR methods mainly focus on improving the efficacy and robustness of reference feature transfer, it is generally overlooked that a well reconstructed SR image should enable better SR reconstruction for its similar LR images when it is referred to as. Therefore, in this work, we propose a reciprocal learning framework that can appropriately leverage such a fact to reinforce the learning of a RefSR network. Besides, we deliberately design a progressive feature alignment and selection module for further improving the RefSR task. The newly proposed module aligns reference-input images at multi-scale feature spaces and performs reference-aware feature selection in a progressive manner, thus more precise reference features can be transferred into the input features and the network capability is enhanced. Our reciprocal learning paradigm is model-agnostic and it can be applied to arbitrary RefSR models. We empirically show that multiple recent state-of-the-art RefSR models can be consistently improved with our reciprocal learning paradigm. Furthermore, our proposed model together with the reciprocal learning strategy sets new state-of-the-art performances on multiple benchmarks.
Abstract:We propose a novel image retouching method by modeling the retouching process as performing a sequence of newly introduced trainable neural color operators. The neural color operator mimics the behavior of traditional color operators and learns pixelwise color transformation while its strength is controlled by a scalar. To reflect the homomorphism property of color operators, we employ equivariant mapping and adopt an encoder-decoder structure which maps the non-linear color transformation to a much simpler transformation (i.e., translation) in a high dimensional space. The scalar strength of each neural color operator is predicted using CNN based strength predictors by analyzing global image statistics. Overall, our method is rather lightweight and offers flexible controls. Experiments and user studies on public datasets show that our method consistently achieves the best results compared with SOTA methods in both quantitative measures and visual qualities. The code and data will be made publicly available.