Abstract:Transformer-based models dominate modern AI workloads but exacerbate memory bottlenecks due to their quadratic attention complexity and ever-growing model sizes. Existing accelerators, such as Groq and Cerebras, mitigate off-chip traffic with large on-chip caches, while algorithmic innovations such as FlashAttention fuse operators to avoid materializing large attention matrices. However, as off-chip traffic decreases, our measurements show that on-chip SRAM accesses account for over 60% of energy in long-sequence workloads, making cache access the new bottleneck. We propose 3D-Flow, a hybrid-bonded, 3D-stacked spatial accelerator that enables register-to-register communication across vertically partitioned PE tiers. Unlike 2D multi-array architectures limited by NoC-based router-to-router transfers, 3D-Flow leverages sub-10 um vertical TSVs to sustain cycle-level operator pipelining with minimal overhead. On top of this architecture, we design 3D-FlashAttention, a fine-grained scheduling method that balances latency across tiers, forming a bubble-free vertical dataflow without on-chip SRAM roundtrips. Evaluations on Transformer workloads (OPT and QWEN models) show that our 3D spatial accelerator reduces 46-93% energy consumption and achieves 1.4x-7.6x speedups compared to state-of-the-art 2D and 3D designs.
Abstract:Language models have become practical tools for quantum computing education and research, from summarizing technical papers to explaining theoretical concepts and answering questions about recent developments in the field. While existing benchmarks evaluate quantum code generation and circuit design, their understanding of quantum computing concepts has not been systematically measured. Quantum-Audit addresses this gap with 2,700 questions covering core quantum computing topics. We evaluate 26 models from leading organizations. Our benchmark comprises 1,000 expert-written questions, 1,000 questions extracted from research papers using LLMs and validated by experts, plus an additional 700 questions including 350 open-ended questions and 350 questions with false premises to test whether models can correct erroneous assumptions. Human participants scored between 23% and 86%, with experts averaging 74%. Top-performing models exceeded the expert average, with Claude Opus 4.5 reaching 84% accuracy, though top models showed an average 12-point accuracy drop on expert-written questions compared to LLM-generated ones. Performance declined further on advanced topics, dropping to 73% on security questions. Additionally, models frequently accepted and reinforced false premises embedded in questions instead of identifying them, with accuracy below 66% on these critical reasoning tasks.
Abstract:Multimodal Large Language Models (MLLMs) demonstrate impressive cross-modal capabilities, yet their substantial size poses significant deployment challenges. Knowledge distillation (KD) is a promising solution for compressing these models, but existing methods primarily rely on static next-token alignment, neglecting the dynamic token interactions, which embed essential capabilities for multimodal understanding and generation. To this end, we introduce Align-TI, a novel KD framework designed from the perspective of Token Interactions. Our approach is motivated by the insight that MLLMs rely on two primary interactions: vision-instruction token interactions to extract relevant visual information, and intra-response token interactions for coherent generation. Accordingly, Align-TI introduces two components: IVA enables the student model to imitate the teacher's instruction-relevant visual information extract capability by aligning on salient visual regions. TPA captures the teacher's dynamic generative logic by aligning the sequential token-to-token transition probabilities. Extensive experiments demonstrate Align-TI's superiority. Notably, our approach achieves $2.6\%$ relative improvement over Vanilla KD, and our distilled Align-TI-2B even outperforms LLaVA-1.5-7B (a much larger MLLM) by $7.0\%$, establishing a new state-of-the-art distillation framework for training parameter-efficient MLLMs. Code is available at https://github.com/lchen1019/Align-TI.
Abstract:In this report, we introduce ERNIE 5.0, a natively autoregressive foundation model desinged for unified multimodal understanding and generation across text, image, video, and audio. All modalities are trained from scratch under a unified next-group-of-tokens prediction objective, based on an ultra-sparse mixture-of-experts (MoE) architecture with modality-agnostic expert routing. To address practical challenges in large-scale deployment under diverse resource constraints, ERNIE 5.0 adopts a novel elastic training paradigm. Within a single pre-training run, the model learns a family of sub-models with varying depths, expert capacities, and routing sparsity, enabling flexible trade-offs among performance, model size, and inference latency in memory- or time-constrained scenarios. Moreover, we systematically address the challenges of scaling reinforcement learning to unified foundation models, thereby guaranteeing efficient and stable post-training under ultra-sparse MoE architectures and diverse multimodal settings. Extensive experiments demonstrate that ERNIE 5.0 achieves strong and balanced performance across multiple modalities. To the best of our knowledge, among publicly disclosed models, ERNIE 5.0 represents the first production-scale realization of a trillion-parameter unified autoregressive model that supports both multimodal understanding and generation. To facilitate further research, we present detailed visualizations of modality-agnostic expert routing in the unified model, alongside comprehensive empirical analysis of elastic training, aiming to offer profound insights to the community.
Abstract:Storage systems are fundamental to modern computing infrastructures, yet ensuring their correctness remains challenging in practice. Despite decades of research on system testing, many storage-system failures (including durability, ordering, recovery, and consistency violations) remain difficult to expose systematically. This difficulty stems not primarily from insufficient testing tooling, but from intrinsic properties of storage-system execution, including nondeterministic interleavings, long-horizon state evolution, and correctness semantics that span multiple layers and execution phases. This survey adopts a storage-centric view of system testing and organizes existing techniques according to the execution properties and failure mechanisms they target. We review a broad spectrum of approaches, ranging from concurrency testing and long-running workloads to crash-consistency analysis, hardware-level semantic validation, and distributed fault injection, and analyze their fundamental strengths and limitations. Within this framework, we examine fuzzing as an automated testing paradigm, highlighting systematic mismatches between conventional fuzzing assumptions and storage-system semantics, and discuss how recent artificial intelligence advances may complement fuzzing through state-aware and semantic guidance. Overall, this survey provides a unified perspective on storage-system correctness testing and outlines key challenges
Abstract:Accurate extraction of rural roads from high-resolution remote sensing imagery is essential for infrastructure planning and sustainable development. However, this task presents unique challenges in rural settings due to several factors. These include high intra-class variability and low inter-class separability from diverse surface materials, frequent vegetation occlusions that disrupt spatial continuity, and narrow road widths that exacerbate detection difficulties. Existing methods, primarily optimized for structured urban environments, often underperform in these scenarios as they overlook such distinctive characteristics. To address these challenges, we propose DSFC-Net, a dual-encoder framework that synergistically fuses spatial and frequency-domain information. Specifically, a CNN branch is employed to capture fine-grained local road boundaries and short-range continuity, while a novel Spatial-Frequency Hybrid Transformer (SFT) is introduced to robustly model global topological dependencies against vegetation occlusions. Distinct from standard attention mechanisms that suffer from frequency bias, the SFT incorporates a Cross-Frequency Interaction Attention (CFIA) module that explicitly decouples high- and low-frequency information via a Laplacian Pyramid strategy. This design enables the dynamic interaction between spatial details and frequency-aware global contexts, effectively preserving the connectivity of narrow roads. Furthermore, a Channel Feature Fusion Module (CFFM) is proposed to bridge the two branches by adaptively recalibrating channel-wise feature responses, seamlessly integrating local textures with global semantics for accurate segmentation. Comprehensive experiments on the WHU-RuR+, DeepGlobe, and Massachusetts datasets validate the superiority of DSFC-Net over state-of-the-art approaches.
Abstract:Current quantum neural networks suffer from extreme sensitivity to both adversarial perturbations and hardware noise, creating a significant barrier to real-world deployment. Existing robustness techniques typically sacrifice clean accuracy or require prohibitive computational resources. We propose a hybrid quantum-classical Differentiable Quantum Architecture Search (DQAS) framework that addresses these limitations by jointly optimizing circuit structure and robustness through gradient-based methods. Our approach enhances traditional DQAS with a lightweight Classical Noise Layer applied before quantum processing, enabling simultaneous optimization of gate selection and noise parameters. This design preserves the quantum circuit's integrity while introducing trainable perturbations that enhance robustness without compromising standard performance. Experimental validation on MNIST, FashionMNIST, and CIFAR datasets shows consistent improvements in both clean and adversarial accuracy compared to existing quantum architecture search methods. Under various attack scenarios, including Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), Basic Iterative Method (BIM), and Momentum Iterative Method (MIM), and under realistic quantum noise conditions, our hybrid framework maintains superior performance. Testing on actual quantum hardware confirms the practical viability of discovered architectures. These results demonstrate that strategic classical preprocessing combined with differentiable quantum architecture optimization can significantly enhance quantum neural network robustness while maintaining computational efficiency.
Abstract:Physical activity during hip fracture rehabilitation is essential for mitigating long-term functional decline in geriatric patients. However, it is rarely quantified in clinical practice. Existing continuous monitoring systems with commercially available wearable activity trackers are typically developed in middle-aged adults and therefore perform unreliably in older adults with slower and more variable gait patterns. This study aimed to develop a robust human activity recognition (HAR) system to improve continuous physical activity recognition in the context of hip fracture rehabilitation. 24 healthy older adults aged over 80 years were included to perform activities of daily living (walking, standing, sitting, lying down, and postural transfers) under simulated free-living conditions for 75 minutes while wearing two accelerometers positioned on the lower back and anterior upper thigh. Model robustness was evaluated using leave-one-subject-out cross-validation. The synthetic data demonstrated potential to improve generalization across participants. The resulting feature intervention model (FIM), aided by synthetic data guidance, achieved reliable activity recognition with mean F1-scores of 0.896 for walking, 0.927 for standing, 0.997 for sitting, 0.937 for lying down, and 0.816 for postural transfers. Compared with a control condition model without synthetic data, the FIM significantly improved the postural transfer detection, i.e., an activity class of high clinical relevance that is often overlooked in existing HAR literature. In conclusion, these preliminary results demonstrate the feasibility of robust activity recognition in older adults. Further validation in hip fracture patient populations is required to assess the clinical utility of the proposed monitoring system.
Abstract:Making deep learning recommendation model (DLRM) training and inference fast and efficient is important. However, this presents three key system challenges - model architecture diversity, kernel primitive diversity, and hardware generation and architecture heterogeneity. This paper presents KernelEvolve-an agentic kernel coding framework-to tackle heterogeneity at-scale for DLRM. KernelEvolve is designed to take kernel specifications as input and automate the process of kernel generation and optimization for recommendation model across heterogeneous hardware architectures. KernelEvolve does so by operating at multiple programming abstractions, from Triton and CuTe DSL to low-level hardware agnostic languages, spanning the full hardware-software optimization stack. The kernel optimization process is described as graph-based search with selection policy, universal operator, fitness function, and termination rule, dynamically adapts to runtime execution context through retrieval-augmented prompt synthesis. We designed, implemented, and deployed KernelEvolve to optimize a wide variety of production recommendation models across generations of NVIDIA and AMD GPUs, as well as Meta's AI accelerators. We validate KernelEvolve on the publicly-available KernelBench suite, achieving 100% pass rate on all 250 problems across three difficulty levels, and 160 PyTorch ATen operators across three heterogeneous hardware platforms, demonstrating 100% correctness. KernelEvolve reduces development time from weeks to hours and achieves substantial performance improvements over PyTorch baselines across diverse production use cases and for heterogeneous AI systems at-scale. Beyond performance efficiency improvements, KernelEvolve significantly mitigates the programmability barrier for new AI hardware by enabling automated kernel generation for in-house developed AI hardware.
Abstract:Student engagement is a critical factor influencing academic success and learning outcomes. Accurately predicting student engagement is essential for optimizing teaching strategies and providing personalized interventions. However, most approaches focus on single-dimensional feature analysis and assessing engagement based on individual student factors. In this work, we propose a dual-stream multi-feature fusion model based on hypergraph convolutional networks (DS-HGCN), incorporating social contagion of student engagement. DS-HGCN enables accurate prediction of student engagement states by modeling multi-dimensional features and their propagation mechanisms between students. The framework constructs a hypergraph structure to encode engagement contagion among students and captures the emotional and behavioral differences and commonalities by multi-frequency signals. Furthermore, we introduce a hypergraph attention mechanism to dynamically weigh the influence of each student, accounting for individual differences in the propagation process. Extensive experiments on public benchmark datasets demonstrate that our proposed method achieves superior performance and significantly outperforms existing state-of-the-art approaches.