Henry
Abstract:Single-channel audio separation aims to separate individual sources from a single-channel mixture. Most existing methods rely on supervised learning with synthetically generated paired data. However, obtaining high-quality paired data in real-world scenarios is often difficult. This data scarcity can degrade model performance under unseen conditions and limit generalization ability. To this end, in this work, we approach this problem from an unsupervised perspective, framing it as a probabilistic inverse problem. Our method requires only diffusion priors trained on individual sources. Separation is then achieved by iteratively guiding an initial state toward the solution through reconstruction guidance. Importantly, we introduce an advanced inverse problem solver specifically designed for separation, which mitigates gradient conflicts caused by interference between the diffusion prior and reconstruction guidance during inverse denoising. This design ensures high-quality and balanced separation performance across individual sources. Additionally, we find that initializing the denoising process with an augmented mixture instead of pure Gaussian noise provides an informative starting point that significantly improves the final performance. To further enhance audio prior modeling, we design a novel time-frequency attention-based network architecture that demonstrates strong audio modeling capability. Collectively, these improvements lead to significant performance gains, as validated across speech-sound event, sound event, and speech separation tasks.
Abstract:In this paper, we investigate a movable antenna (MA) enabled anti-jamming optimization problem, where a legitimate uplink system is exposed to multiple jammers with unknown jamming channels. To enhance the anti-jamming capability of the considered system, an MA array is deployed at the receiver, and the antenna positions and the minimum-variance distortionless-response (MVDR) receive beamformer are jointly optimized to maximize the output signal-to-interference-plus-noise ratio (SINR). The main challenge arises from the fact that the interference covariance matrix is unknown and nonlinearly dependent on the antenna positions. To overcome these issues, we propose a surrogate objective by replacing the unknown covariance with the sample covariance evaluated at the current antenna position anchor. Under a two-timescale framework, the surrogate objective is updated once per block (contains multiple snapshots) at the current anchor position, while the MVDR beamformer is adapted on a per-snapshot basis. We establish a local bound on the discrepancy between the surrogate and the true objective by leveraging matrix concentration inequalities, and further prove that a natural historical-averaging surrogate suffers from a non-vanishing geometric bias. Building on these insights, we develop a low-complexity projected trust-region (TR) surrogate optimization (PTRSO) algorithm that maintains the locality of each iteration via TR constraints and enforces feasibility through projection, which is guaranteed to converge to a stationary point near the anchor. Numerical results verify the effectiveness and robustness of the proposed PTRSO algorithm, which consistently achieves higher output SINR than existing baselines.
Abstract:Predicting multiphysics dynamics is computationally expensive and challenging due to the severe coupling of multi-scale, heterogeneous physical processes. While neural surrogates promise a paradigm shift, the field currently suffers from an "illusion of mastery", as repeatedly emphasized in top-tier commentaries: existing evaluations overly rely on simplified, low-dimensional proxies, which fail to expose the models' inherent fragility in realistic regimes. To bridge this critical gap, we present REALM (REalistic AI Learning for Multiphysics), a rigorous benchmarking framework designed to test neural surrogates on challenging, application-driven reactive flows. REALM features 11 high-fidelity datasets spanning from canonical multiphysics problems to complex propulsion and fire safety scenarios, alongside a standardized end-to-end training and evaluation protocol that incorporates multiphysics-aware preprocessing and a robust rollout strategy. Using this framework, we systematically benchmark over a dozen representative surrogate model families, including spectral operators, convolutional models, Transformers, pointwise operators, and graph/mesh networks, and identify three robust trends: (i) a scaling barrier governed jointly by dimensionality, stiffness, and mesh irregularity, leading to rapidly growing rollout errors; (ii) performance primarily controlled by architectural inductive biases rather than parameter count; and (iii) a persistent gap between nominal accuracy metrics and physically trustworthy behavior, where models with high correlations still miss key transient structures and integral quantities. Taken together, REALM exposes the limits of current neural surrogates on realistic multiphysics flows and offers a rigorous testbed to drive the development of next-generation physics-aware architectures.
Abstract:Nowadays, Graph Fraud Detection (GFD) in financial scenarios has become an urgent research topic to protect online payment security. However, as organized crime groups are becoming more professional in real-world scenarios, fraudsters are employing more sophisticated camouflage strategies. Specifically, fraudsters disguise themselves by mimicking the behavioral data collected by platforms, ensuring that their key characteristics are consistent with those of benign users to a high degree, which we call Adaptive Camouflage. Consequently, this narrows the differences in behavioral traits between them and benign users within the platform's database, thereby making current GFD models lose efficiency. To address this problem, we propose a relation diffusion-based graph augmentation model Grad. In detail, Grad leverages a supervised graph contrastive learning module to enhance the fraud-benign difference and employs a guided relation diffusion generator to generate auxiliary homophilic relations from scratch. Based on these, weak fraudulent signals would be enhanced during the aggregation process, thus being obvious enough to be captured. Extensive experiments have been conducted on two real-world datasets provided by WeChat Pay, one of the largest online payment platforms with billions of users, and three public datasets. The results show that our proposed model Grad outperforms SOTA methods in both various scenarios, achieving at most 11.10% and 43.95% increases in AUC and AP, respectively. Our code is released at https://github.com/AI4Risk/antifraud and https://github.com/Muyiiiii/WWW25-Grad.
Abstract:Reusing KV cache is essential for high efficiency of Large Language Model (LLM) inference systems. With more LLM users, the KV cache footprint can easily exceed GPU memory capacity, so prior work has proposed to either evict KV cache to lower-tier storage devices, or compress KV cache so that more KV cache can be fit in the fast memory. However, prior work misses an important opportunity: jointly optimizing the eviction and compression decisions across all KV caches to minimize average generation latency without hurting quality. We propose EVICPRESS, a KV-cache management system that applies lossy compression and adaptive eviction to KV cache across multiple storage tiers. Specifically, for each KV cache of a context, EVICPRESS considers the effect of compression and eviction of the KV cache on the average generation quality and delay across all contexts as a whole. To achieve this, EVICPRESS proposes a unified utility function that quantifies the effect of quality and delay of the lossy compression or eviction. To this end, EVICPRESS's profiling module periodically updates the utility function scores on all possible eviction-compression configurations for all contexts and places KV caches using a fast heuristic to rearrange KV caches on all storage tiers, with the goal of maximizing the utility function scores on each storage tier. Compared to the baselines that evict KV cache or compress KV cache, EVICPRESS achieves higher KV-cache hit rates on fast devices, i.e., lower delay, while preserving high generation quality by applying conservative compression to contexts that are sensitive to compression errors. Evaluation on 12 datasets and 5 models demonstrates that EVICPRESS achieves up to 2.19x faster time-to-first-token (TTFT) at equivalent generation quality.
Abstract:Accurate modeling of spatiotemporal dynamics is crucial to understanding complex phenomena across science and engineering. However, this task faces a fundamental challenge when the governing equations are unknown and observational data are sparse. System stiffness, the coupling of multiple time-scales, further exacerbates this problem and hinders long-term prediction. Existing methods fall short: purely data-driven methods demand massive datasets, whereas physics-aware approaches are constrained by their reliance on known equations and fine-grained time steps. To overcome these limitations, we introduce an equation-free learning framework, namely, the Stable Spectral Neural Operator (SSNO), for modeling stiff partial differential equation (PDE) systems based on limited data. Instead of encoding specific equation terms, SSNO embeds spectrally inspired structures in its architecture, yielding strong inductive biases for learning the underlying physics. It automatically learns local and global spatial interactions in the frequency domain, while handling system stiffness with a robust integrating factor time-stepping scheme. Demonstrated across multiple 2D and 3D benchmarks in Cartesian and spherical geometries, SSNO achieves prediction errors one to two orders of magnitude lower than leading models. Crucially, it shows remarkable data efficiency, requiring only very few (2--5) training trajectories for robust generalization to out-of-distribution conditions. This work offers a robust and generalizable approach to learning stiff spatiotemporal dynamics from limited data without explicit \textit{a priori} knowledge of PDE terms.
Abstract:Vessel trajectory prediction is fundamental to intelligent maritime systems. Within this domain, short-term prediction of rapid behavioral changes in complex maritime environments has established multimodal trajectory prediction (MTP) as a promising research area. However, existing vessel MTP methods suffer from limited scenario applicability and insufficient explainability. To address these challenges, we propose a unified MTP framework incorporating explainable navigation intentions, which we classify into sustained and transient categories. Our method constructs sustained intention trees from historical trajectories and models dynamic transient intentions using a Conditional Variational Autoencoder (CVAE), while using a non-local attention mechanism to maintain global scenario consistency. Experiments on real Automatic Identification System (AIS) datasets demonstrates our method's broad applicability across diverse scenarios, achieving significant improvements in both ADE and FDE. Furthermore, our method improves explainability by explicitly revealing the navigational intentions underlying each predicted trajectory.
Abstract:Vision-and-Language Navigation (VLN) requires an agent to dynamically explore complex 3D environments following human instructions. Recent research underscores the potential of harnessing large language models (LLMs) for VLN, given their commonsense knowledge and general reasoning capabilities. Despite their strengths, a substantial gap in task completion performance persists between LLM-based approaches and domain experts, as LLMs inherently struggle to comprehend real-world spatial correlations precisely. Additionally, introducing LLMs is accompanied with substantial computational cost and inference latency. To address these issues, we propose a novel dual-process thinking framework dubbed R3, integrating LLMs' generalization capabilities with VLN-specific expertise in a zero-shot manner. The framework comprises three core modules: Runner, Ruminator, and Regulator. The Runner is a lightweight transformer-based expert model that ensures efficient and accurate navigation under regular circumstances. The Ruminator employs a powerful multimodal LLM as the backbone and adopts chain-of-thought (CoT) prompting to elicit structured reasoning. The Regulator monitors the navigation progress and controls the appropriate thinking mode according to three criteria, integrating Runner and Ruminator harmoniously. Experimental results illustrate that R3 significantly outperforms other state-of-the-art methods, exceeding 3.28% and 3.30% in SPL and RGSPL respectively on the REVERIE benchmark. This pronounced enhancement highlights the effectiveness of our method in handling challenging VLN tasks.




Abstract:Next-generation wireless networks will rely on mmWave/sub-THz spectrum and extremely large antenna arrays (ELAAs). This will push their operation into the near field where far-field beam management degrades and beam training becomes more costly and must be done more frequently. Because ELAA training and data transmission consume energy and training trades off with service time, we pose a cross-layer control problem that couples PHY-layer beam management with MAC-layer service under delay-sensitive traffic. The controller decides when to retrain and how aggressively to train (pilot count and sparsity) while allocating transmit power, explicitly balancing pilot overhead, data-phase rate, and energy to reduce the queueing delay of MAC-layer frames/packets to be transmitted. We model the problem as a partially observable Markov decision process and solve it with deep reinforcement learning. In simulations with a realistic near-field channel and varying mobility and traffic load, the learned policy outperforms strong 5G-NR--style baselines at a comparable energy: it achieves 85.5% higher throughput than DFT sweeping and reduces the overflow rate by 78%. These results indicate a practical path to overhead-aware, traffic-adaptive near-field beam management with implications for emerging low-latency, high-rate next-generation applications such as digital twin, spatial computing, and immersive communication.
Abstract:Multiple instance learning (MIL) has emerged as the dominant paradigm for whole slide image (WSI) analysis in computational pathology, achieving strong diagnostic performance through patch-level feature aggregation. However, existing MIL methods face critical limitations: (1) they rely on attention mechanisms that lack causal interpretability, and (2) they fail to integrate patient demographics (age, gender, race), leading to fairness concerns across diverse populations. These shortcomings hinder clinical translation, where algorithmic bias can exacerbate health disparities. We introduce \textbf{MeCaMIL}, a causality-aware MIL framework that explicitly models demographic confounders through structured causal graphs. Unlike prior approaches treating demographics as auxiliary features, MeCaMIL employs principled causal inference -- leveraging do-calculus and collider structures -- to disentangle disease-relevant signals from spurious demographic correlations. Extensive evaluation on three benchmarks demonstrates state-of-the-art performance across CAMELYON16 (ACC/AUC/F1: 0.939/0.983/0.946), TCGA-Lung (0.935/0.979/0.931), and TCGA-Multi (0.977/0.993/0.970, five cancer types). Critically, MeCaMIL achieves superior fairness -- demographic disparity variance drops by over 65% relative reduction on average across attributes, with notable improvements for underserved populations. The framework generalizes to survival prediction (mean C-index: 0.653, +0.017 over best baseline across five cancer types). Ablation studies confirm causal graph structure is essential -- alternative designs yield 0.048 lower accuracy and 4.2x times worse fairness. These results establish MeCaMIL as a principled framework for fair, interpretable, and clinically actionable AI in digital pathology. Code will be released upon acceptance.