Henry
Abstract:Graph neural networks (GNNs) have exhibited superior performance in various classification tasks on graph-structured data. However, they encounter the potential vulnerability from the link stealing attacks, which can infer the presence of a link between two nodes via measuring the similarity of its incident nodes' prediction vectors produced by a GNN model. Such attacks pose severe security and privacy threats to the training graph used in GNN models. In this work, we propose a novel solution, called Graph Link Disguise (GRID), to defend against link stealing attacks with the formal guarantee of GNN model utility for retaining prediction accuracy. The key idea of GRID is to add carefully crafted noises to the nodes' prediction vectors for disguising adjacent nodes as n-hop indirect neighboring nodes. We take into account the graph topology and select only a subset of nodes (called core nodes) covering all links for adding noises, which can avert the noises offset and have the further advantages of reducing both the distortion loss and the computation cost. Our crafted noises can ensure 1) the noisy prediction vectors of any two adjacent nodes have their similarity level like that of two non-adjacent nodes and 2) the model prediction is unchanged to ensure zero utility loss. Extensive experiments on five datasets are conducted to show the effectiveness of our proposed GRID solution against different representative link-stealing attacks under transductive settings and inductive settings respectively, as well as two influence-based attacks. Meanwhile, it achieves a much better privacy-utility trade-off than existing methods when extended to GNNs.
Abstract:Federated Continual Learning (FCL) aims to enable sequentially privacy-preserving model training on streams of incoming data that vary in edge devices by preserving previous knowledge while adapting to new data. Current FCL literature focuses on restricted data privacy and access to previously seen data while imposing no constraints on the training overhead. This is unreasonable for FCL applications in real-world scenarios, where edge devices are primarily constrained by resources such as storage, computational budget, and label rate. We revisit this problem with a large-scale benchmark and analyze the performance of state-of-the-art FCL approaches under different resource-constrained settings. Various typical FCL techniques and six datasets in two incremental learning scenarios (Class-IL and Domain-IL) are involved in our experiments. Through extensive experiments amounting to a total of over 1,000+ GPU hours, we find that, under limited resource-constrained settings, existing FCL approaches, with no exception, fail to achieve the expected performance. Our conclusions are consistent in the sensitivity analysis. This suggests that most existing FCL methods are particularly too resource-dependent for real-world deployment. Moreover, we study the performance of typical FCL techniques with resource constraints and shed light on future research directions in FCL.
Abstract:In this paper, we propose an integrated sensing and communication (ISAC) system aided by the movable-antenna (MA) array, which can improve the communication and sensing performance via flexible antenna movement over conventional fixed-position antenna (FPA) array. First, we consider the downlink multiuser communication, where each user is randomly distributed within a given three-dimensional zone with local movement. To reduce the overhead of frequent antenna movement, the antenna position vector (APV) is designed based on users' statistical channel state information (CSI), so that the antennas only need to be moved in a large timescale. Then, for target sensing, the Cramer-Rao bounds (CRBs) of the estimation mean square error for different spatial angles of arrival (AoAs) are derived as functions of MAs' positions. Based on the above, we formulate an optimization problem to maximize the expected minimum achievable rate among all communication users, with given constraints on the maximum acceptable CRB thresholds for target sensing. An alternating optimization algorithm is proposed to iteratively optimize one of the horizontal and vertical APVs of the MA array with the other being fixed. Numerical results demonstrate that our proposed MA arrays can significantly enlarge the trade-off region between communication and sensing performance compared to conventional FPA arrays with different inter-antenna spacing. It is also revealed that the steering vectors of the designed MA arrays exhibit low correlation in the angular domain, thus effectively reducing channel correlation among communication users to enhance their achievable rates, while alleviating ambiguity in target angle estimation to achieve improved sensing accuracy.
Abstract:Fluid antenna system (FAS) and movable antenna (MA) have recently emerged as promising technologies to exploit new spatial degrees of freedom (DoFs), which have attracted growing attention in wireless communication. In this paper, we propose a new rotatable antenna (RA) model to improve the performance of wireless communication systems. Different from conventional fixed antennas, the proposed RA system can flexibly alter the three-dimensional (3D) boresight direction of each antenna independently by adjusting its deflection angles to achieve a desired array directional gain pattern. Specifically, we investigate an RA-enabled uplink communication system, where the receive beamforming and the deflection angles of all RAs at the base station (BS) are jointly optimized to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the users. In the special single-user and free-space propagation setup, the optimal deflection angles of RAs are derived in closed form with the maximum-ratio combining (MRC) beamformer applied at the BS. Moreover, we analyze the asymptotic performance with an infinite number of antennas based on this solution, which theoretically proves that the RA system can achieve a higher array gain as compared to the fixed-antenna system. In the general multi-user and multi-path channel setup, we first propose an alternating optimization (AO) algorithm to alternately optimize the receive beamforming and the deflection angles of RAs in an iterative manner. Then, a two-stage algorithm that solves the formulated problem without the need for iteration is further proposed to reduce computational complexity. Simulation results are provided to validate our analytical results and demonstrate that the proposed RA system can significantly outperform other benchmark schemes.
Abstract:Music source separation and pitch estimation are two vital tasks in music information retrieval. Typically, the input of pitch estimation is obtained from the output of music source separation. Therefore, existing methods have tried to perform these two tasks simultaneously, so as to leverage the mutually beneficial relationship between both tasks. However, these methods still face two critical challenges that limit the improvement of both tasks: the lack of labeled data and joint learning optimization. To address these challenges, we propose a Model-Agnostic Joint Learning (MAJL) framework for both tasks. MAJL is a generic framework and can use variant models for each task. It includes a two-stage training method and a dynamic weighting method named Dynamic Weights on Hard Samples (DWHS), which addresses the lack of labeled data and joint learning optimization, respectively. Experimental results on public music datasets show that MAJL outperforms state-of-the-art methods on both tasks, with significant improvements of 0.92 in Signal-to-Distortion Ratio (SDR) for music source separation and 2.71% in Raw Pitch Accuracy (RPA) for pitch estimation. Furthermore, comprehensive studies not only validate the effectiveness of each component of MAJL, but also indicate the great generality of MAJL in adapting to different model architectures.
Abstract:The deployment of Large Language Models (LLMs) in recommender systems for predicting Click-Through Rates (CTR) necessitates a delicate balance between computational efficiency and predictive accuracy. This paper presents an optimization framework that combines Retrieval-Augmented Generation (RAG) with an innovative multi-head early exit architecture to concurrently enhance both aspects. By integrating Graph Convolutional Networks (GCNs) as efficient retrieval mechanisms, we are able to significantly reduce data retrieval times while maintaining high model performance. The early exit strategy employed allows for dynamic termination of model inference, utilizing real-time predictive confidence assessments across multiple heads. This not only quickens the responsiveness of LLMs but also upholds or improves their accuracy, making it ideal for real-time application scenarios. Our experiments demonstrate how this architecture effectively decreases computation time without sacrificing the accuracy needed for reliable recommendation delivery, establishing a new standard for efficient, real-time LLM deployment in commercial systems.
Abstract:In this letter, we propose a novel Movable Superdirective Pairs (MSP) approach that combines movable antennas with superdirective pair arrays to enhance the performance of millimeter-wave (mmWave) communications on the user side. By controlling the rotation angles and positions of superdirective antenna pairs, the proposed MSP approach maximizes the received signal-to-noise ratio (SNR) of multipath signals without relying on phase shifters or attenuators. This approach addresses the limitations of traditional superdirective antennas, which are typically restricted to the endfire direction and suffer from reduced scanning bandwidth and increased complexity. An efficient algorithm based on alternating optimization and the gradient projection method is developed to solve the non-convex optimization problem of antennas' joint rotating positioning. Simulation results demonstrate that the MSP approach achieves significant performance gains over fixed-position array (FPA) employing Maximum Ratio Combining (MRC), while reducing system complexity and hardware costs.
Abstract:Integrated sensing and communication (ISAC) is emerging as a pivotal technology for next-generation wireless networks. However, existing ISAC systems are based on fixed-position antennas (FPAs), which inevitably incur a loss in performance when balancing the trade-off between sensing and communication. Movable antenna (MA) technology offers promising potential to enhance ISAC performance by enabling flexible antenna movement. Nevertheless, exploiting more spatial channel variations requires larger antenna moving regions, which may invalidate the conventional far-field assumption for channels between transceivers. Therefore, this paper utilizes the MA to enhance sensing and communication capabilities in near-field ISAC systems, where a full-duplex base station (BS) is equipped with multiple transmit and receive MAs movable in large-size regions to simultaneously sense multiple targets and serve multiple uplink (UL) and downlink (DL) users for communication. We aim to maximize the weighted sum of sensing and communication rates (WSR) by jointly designing the transmit beamformers, sensing signal covariance matrices, receive beamformers, and MA positions at the BS, as well as the UL power allocation. The resulting optimization problem is challenging to solve, while we propose an efficient two-layer random position (RP) algorithm to tackle it. In addition, to reduce movement delay and cost, we design an antenna position matching (APM) algorithm based on the greedy strategy to minimize the total MA movement distance. Extensive simulation results demonstrate the substantial performance improvement achieved by deploying MAs in near-field ISAC systems. Moreover, the results show the effectiveness of the proposed APM algorithm in reducing the antenna movement distance, which is helpful for energy saving and time overhead reduction for MA-aided near-field ISAC systems with large moving regions.
Abstract:Passive metal reflectors for communication enhancement have appealing advantages such as ultra low cost, zero energy expenditure, maintenance-free operation, long life span, and full compatibility with legacy wireless systems. To unleash the full potential of passive reflectors for wireless communications, this paper proposes a new passive reflector architecture, termed flexible reflector (FR), for enabling the flexible adjustment of beamforming direction via the FR placement and rotation optimization. We consider the multi-FR aided area coverage enhancement and aim to maximize the minimum expected receive power over all locations within the target coverage area, by jointly optimizing the placement positions and rotation angles of multiple FRs. To gain useful insights, the special case of movable reflector (MR) with fixed rotation is first studied to maximize the expected receive power at a target location, where the optimal single-MR placement positions for electrically large and small reflectors are derived in closed-form, respectively. It is shown that the reflector should be placed at the specular reflection point for electrically large reflector. While for area coverage enhancement, the optimal placement is obtained for the single-MR case and a sequential placement algorithm is proposed for the multi-MR case. Moreover, for the general case of FR, joint placement and rotation design is considered for the single-/multi-FR aided coverage enhancement, respectively. Numerical results are presented which demonstrate significant performance gains of FRs over various benchmark schemes under different practical setups in terms of receive power enhancement.
Abstract:We introduce LLM4AD, a unified Python platform for algorithm design (AD) with large language models (LLMs). LLM4AD is a generic framework with modularized blocks for search methods, algorithm design tasks, and LLM interface. The platform integrates numerous key methods and supports a wide range of algorithm design tasks across various domains including optimization, machine learning, and scientific discovery. We have also designed a unified evaluation sandbox to ensure a secure and robust assessment of algorithms. Additionally, we have compiled a comprehensive suite of support resources, including tutorials, examples, a user manual, online resources, and a dedicated graphical user interface (GUI) to enhance the usage of LLM4AD. We believe this platform will serve as a valuable tool for fostering future development in the merging research direction of LLM-assisted algorithm design.