Abstract:Multimodal tracking has garnered widespread attention as a result of its ability to effectively address the inherent limitations of traditional RGB tracking. However, existing multimodal trackers mainly focus on the fusion and enhancement of spatial features or merely leverage the sparse temporal relationships between video frames. These approaches do not fully exploit the temporal correlations in multimodal videos, making it difficult to capture the dynamic changes and motion information of targets in complex scenarios. To alleviate this problem, we propose a unified multimodal spatial-temporal tracking approach named STTrack. In contrast to previous paradigms that solely relied on updating reference information, we introduced a temporal state generator (TSG) that continuously generates a sequence of tokens containing multimodal temporal information. These temporal information tokens are used to guide the localization of the target in the next time state, establish long-range contextual relationships between video frames, and capture the temporal trajectory of the target. Furthermore, at the spatial level, we introduced the mamba fusion and background suppression interactive (BSI) modules. These modules establish a dual-stage mechanism for coordinating information interaction and fusion between modalities. Extensive comparisons on five benchmark datasets illustrate that STTrack achieves state-of-the-art performance across various multimodal tracking scenarios. Code is available at: https://github.com/NJU-PCALab/STTrack.
Abstract:Lane detection plays an important role in autonomous driving perception systems. As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance and emerged as a key research direction in autonomous driving perception. The core design of these algorithmic frameworks can be summarized as follows: (1) Task paradigm, focusing on lane instance-level discrimination; (2) Lane modeling, representing lanes as a set of learnable parameters in the neural network; (3) Global context supplementation, enhancing the detection of obscure lanes; (4) Perspective effect elimination, providing 3D lanes usable for downstream applications. From these perspectives, this paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works. For a relatively fair comparison, in addition to comparing the performance of mainstream methods on different benchmarks, their inference speed is also investigated under a unified setting. Moreover, we present some extended works on lane detection, including multi-task perception, video lane detection, online high-definition map construction, and lane topology reasoning, to offer readers a comprehensive roadmap for the evolution of lane detection. Finally, we point out some potential future research directions in this field. We exhaustively collect the papers and codes of existing works at https://github.com/Core9724/Awesome-Lane-Detection and will keep tracing the research.
Abstract:Vocal education in the music field is difficult to quantify due to the individual differences in singers' voices and the different quantitative criteria of singing techniques. Deep learning has great potential to be applied in music education due to its efficiency to handle complex data and perform quantitative analysis. However, accurate evaluations with limited samples over rare vocal types, such as Mezzo-soprano, requires extensive well-annotated data support using deep learning models. In order to attain the objective, we perform transfer learning by employing deep learning models pre-trained on the ImageNet and Urbansound8k datasets for the improvement on the precision of vocal technique evaluation. Furthermore, we tackle the problem of the lack of samples by constructing a dedicated dataset, the Mezzo-soprano Vocal Set (MVS), for vocal technique assessment. Our experimental results indicate that transfer learning increases the overall accuracy (OAcc) of all models by an average of 8.3%, with the highest accuracy at 94.2%. We not only provide a novel approach to evaluating Mezzo-soprano vocal techniques but also introduce a new quantitative assessment method for music education.
Abstract:Reconstructing 3D clothed humans from monocular camera data is highly challenging due to viewpoint limitations and image ambiguity. While implicit function-based approaches, combined with prior knowledge from parametric models, have made significant progress, there are still two notable problems. Firstly, the back details of human models are ambiguous due to viewpoint invisibility. The quality of the back details depends on the back normal map predicted by a convolutional neural network (CNN). However, the CNN lacks global information awareness for comprehending the back texture, resulting in excessively smooth back details. Secondly, a single image suffers from local ambiguity due to lighting conditions and body movement. However, implicit functions are highly sensitive to pixel variations in ambiguous regions. To address these ambiguities, we propose the Spatial-Temporal Transformer (STT) network for 3D clothed human reconstruction. A spatial transformer is employed to extract global information for normal map prediction. The establishment of global correlations facilitates the network in comprehending the holistic texture and shape of the human body. Simultaneously, to compensate for local ambiguity in images, a temporal transformer is utilized to extract temporal features from adjacent frames. The incorporation of temporal features can enhance the accuracy of input features in implicit networks. Furthermore, to obtain more accurate temporal features, joint tokens are employed to establish local correspondences between frames. Experimental results on the Adobe and MonoPerfCap datasets have shown that our method outperforms state-of-the-art methods and maintains robust generalization even under low-light outdoor conditions.
Abstract:Large Language Models (LLMs) have achieved substantial progress in artificial intelligence, particularly in reasoning tasks. However, their reliance on static prompt structures, coupled with limited dynamic reasoning capabilities, often constrains their adaptability to complex and evolving problem spaces. In this paper, we propose the Deductive and InDuctive(DID) method, which enhances LLM reasoning by dynamically integrating both deductive and inductive reasoning within the prompt construction process. Drawing inspiration from cognitive science, the DID approach mirrors human adaptive reasoning mechanisms, offering a flexible framework that allows the model to adjust its reasoning pathways based on task context and performance. We empirically validate the efficacy of DID on established datasets such as AIW and MR-GSM8K, as well as on our custom dataset, Holiday Puzzle, which presents tasks about different holiday date calculating challenges. By leveraging DID's hybrid prompt strategy, we demonstrate significant improvements in both solution accuracy and reasoning quality, achieved without imposing substantial computational overhead. Our findings suggest that DID provides a more robust and cognitively aligned framework for reasoning in LLMs, contributing to the development of advanced LLM-driven problem-solving strategies informed by cognitive science models.
Abstract:We propose MESA and DMESA as novel feature matching methods, which utilize Segment Anything Model (SAM) to effectively mitigate matching redundancy. The key insight of our methods is to establish implicit-semantic area matching prior to point matching, based on advanced image understanding of SAM. Then, informative area matches with consistent internal semantic are able to undergo dense feature comparison, facilitating precise inside-area point matching. Specifically, MESA adopts a sparse matching framework and first obtains candidate areas from SAM results through a novel Area Graph (AG). Then, area matching among the candidates is formulated as graph energy minimization and solved by graphical models derived from AG. To address the efficiency issue of MESA, we further propose DMESA as its dense counterpart, applying a dense matching framework. After candidate areas are identified by AG, DMESA establishes area matches through generating dense matching distributions. The distributions are produced from off-the-shelf patch matching utilizing the Gaussian Mixture Model and refined via the Expectation Maximization. With less repetitive computation, DMESA showcases a speed improvement of nearly five times compared to MESA, while maintaining competitive accuracy. Our methods are extensively evaluated on five datasets encompassing indoor and outdoor scenes. The results illustrate consistent performance improvements from our methods for five distinct point matching baselines across all datasets. Furthermore, our methods exhibit promise generalization and improved robustness against image resolution variations. The code is publicly available at https://github.com/Easonyesheng/A2PM-MESA.
Abstract:Epoch extraction has become increasingly popular in recent years for speech analysis research because accurately detecting the location of the Epoch is crucial for analyzing speech signals. The Epoch, occurring at the instant of excitation in the vocal tract system, particularly during glottal closure, plays a significant role in differentiating speakers in multi-speaker conversations. However, the extraction of the Epoch poses a challenge due to the time-varying factors in the vocal tract system, which makes deconvolution for obtaining the original excitation location more complex. In this paper, various methods for Epoch extraction, including Zero Frequency Filtering (ZFF) and Zero Frequency Resonator (ZFR), will be discussed, and their pros and cons evaluated. In addition, the stability, accuracy, and feasibility of each method will be compared. The evaluation will involve a Matlab-based locking algorithm, and a proposed hardware implementation using Raspberry pi for speaker differentiation. The experiment includes six individuals uttering the phrase "The University of Mississippi," with one person acting as the reference or "lock" speaker. The number of epochs occurring at similar positions to the reference speaker will be counted as Delta, with larger Delta values indicating greater speaker similarity. Experimental results demonstrate that when the speaker remains the same, the average number of Delta is 7.5, while for different speakers, the average number of Delta decreases to 3, 2, 2, and 1, respectively, representing a decrease of approximately 73% in the number of epochs at similar positions compared to the reference speaker.
Abstract:Large Language Models (LLMs) have emerged as powerful tools in artificial intelligence, especially in complex decision-making scenarios, but their static problem-solving strategies often limit their adaptability to dynamic environments. We explore the enhancement of reasoning capabilities in LLMs through Temperature Tree ($T^2$) prompting via Particle Swarm Optimization, termed as $T^2$ of Thoughts ($T^2oT$). The primary focus is on enhancing decision-making processes by dynamically adjusting search parameters, especially temperature, to improve accuracy without increasing computational demands. We empirically validate that our hybrid $T^2oT$ approach yields enhancements in, single-solution accuracy, multi-solution generation and text generation quality. Our findings suggest that while dynamic search depth adjustments based on temperature can yield mixed results, a fixed search depth, when coupled with adaptive capabilities of $T^2oT$, provides a more reliable and versatile problem-solving strategy. This work highlights the potential for future explorations in optimizing algorithmic interactions with foundational language models, particularly illustrated by our development for the Game of 24 and Creative Writing tasks.
Abstract:Temporal 3D human pose estimation from monocular videos is a challenging task in human-centered computer vision due to the depth ambiguity of 2D-to-3D lifting. To improve accuracy and address occlusion issues, inertial sensor has been introduced to provide complementary source of information. However, it remains challenging to integrate heterogeneous sensor data for producing physically rational 3D human poses. In this paper, we propose a novel framework, Real-time Optimization and Fusion (RTOF), to address this issue. We first incorporate sparse inertial orientations into a parametric human skeleton to refine 3D poses in kinematics. The poses are then optimized by energy functions built on both visual and inertial observations to reduce the temporal jitters. Our framework outputs smooth and biomechanically plausible human motion. Comprehensive experiments with ablation studies demonstrate its rationality and efficiency. On Total Capture dataset, the pose estimation error is significantly decreased compared to the baseline method.
Abstract:Feature matching is a crucial task in the field of computer vision, which involves finding correspondences between images. Previous studies achieve remarkable performance using learning-based feature comparison. However, the pervasive presence of matching redundancy between images gives rise to unnecessary and error-prone computations in these methods, imposing limitations on their accuracy. To address this issue, we propose MESA, a novel approach to establish precise area (or region) matches for efficient matching redundancy reduction. MESA first leverages the advanced image understanding capability of SAM, a state-of-the-art foundation model for image segmentation, to obtain image areas with implicit semantic. Then, a multi-relational graph is proposed to model the spatial structure of these areas and construct their scale hierarchy. Based on graphical models derived from the graph, the area matching is reformulated as an energy minimization task and effectively resolved. Extensive experiments demonstrate that MESA yields substantial precision improvement for multiple point matchers in indoor and outdoor downstream tasks, e.g. +13.61% for DKM in indoor pose estimation.