Abstract:Conversational search supports multi-turn user-system interactions to solve complex information needs. Different from the traditional single-turn ad-hoc search, conversational search encounters a more challenging problem of context-dependent query understanding with the lengthy and long-tail conversational history context. While conversational query rewriting methods leverage explicit rewritten queries to train a rewriting model to transform the context-dependent query into a stand-stone search query, this is usually done without considering the quality of search results. Conversational dense retrieval methods use fine-tuning to improve a pre-trained ad-hoc query encoder, but they are limited by the conversational search data available for training. In this paper, we leverage both rewritten queries and relevance judgments in the conversational search data to train a better query representation model. The key idea is to align the query representation with those of rewritten queries and relevant documents. The proposed model -- Query Representation Alignment Conversational Dense Retriever, QRACDR, is tested on eight datasets, including various settings in conversational search and ad-hoc search. The results demonstrate the strong performance of QRACDR compared with state-of-the-art methods, and confirm the effectiveness of representation alignment.
Abstract:Generally, high-level features provide more geometrical information compared to point features, which can be exploited to further constrain motions. Planes are commonplace in man-made environments, offering an active means to reduce drift, due to their extensive spatial and temporal observability. To make full use of planar information, we propose a novel visual-inertial odometry (VIO) using an RGBD camera and an inertial measurement unit (IMU), effectively integrating point and plane features in an extended Kalman filter (EKF) framework. Depth information of point features is leveraged to improve the accuracy of point triangulation, while plane features serve as direct observations added into the state vector. Notably, to benefit long-term navigation,a novel graph-based drift detection strategy is proposed to search overlapping and identical structures in the plane map so that the cumulative drift is suppressed subsequently. The experimental results on two public datasets demonstrate that our system outperforms state-of-the-art methods in localization accuracy and meanwhile generates a compact and consistent plane map, free of expensive global bundle adjustment and loop closing techniques.
Abstract:The performance of domain adaptation technologies has not yet reached an ideal level in the current 3D object detection field for autonomous driving, which is mainly due to significant differences in the size of vehicles, as well as the environments they operate in when applied across domains. These factors together hinder the effective transfer and application of knowledge learned from specific datasets. Since the existing evaluation metrics are initially designed for evaluation on a single domain by calculating the 2D or 3D overlap between the prediction and ground-truth bounding boxes, they often suffer from the overfitting problem caused by the size differences among datasets. This raises a fundamental question related to the evaluation of the 3D object detection models' cross-domain performance: Do we really need models to maintain excellent performance in their original 3D bounding boxes after being applied across domains? From a practical application perspective, one of our main focuses is actually on preventing collisions between vehicles and other obstacles, especially in cross-domain scenarios where correctly predicting the size of vehicles is much more difficult. In other words, as long as a model can accurately identify the closest surfaces to the ego vehicle, it is sufficient to effectively avoid obstacles. In this paper, we propose two metrics to measure 3D object detection models' ability of detecting the closer surfaces to the sensor on the ego vehicle, which can be used to evaluate their cross-domain performance more comprehensively and reasonably. Furthermore, we propose a refinement head, named EdgeHead, to guide models to focus more on the learnable closer surfaces, which can greatly improve the cross-domain performance of existing models not only under our new metrics, but even also under the original BEV/3D metrics.
Abstract:Graph-based models and contrastive learning have emerged as prominent methods in Collaborative Filtering (CF). While many existing models in CF incorporate these methods in their design, there seems to be a limited depth of analysis regarding the foundational principles behind them. This paper bridges graph convolution, a pivotal element of graph-based models, with contrastive learning through a theoretical framework. By examining the learning dynamics and equilibrium of the contrastive loss, we offer a fresh lens to understand contrastive learning via graph theory, emphasizing its capability to capture high-order connectivity. Building on this analysis, we further show that the graph convolutional layers often used in graph-based models are not essential for high-order connectivity modeling and might contribute to the risk of oversmoothing. Stemming from our findings, we introduce Simple Contrastive Collaborative Filtering (SCCF), a simple and effective algorithm based on a naive embedding model and a modified contrastive loss. The efficacy of the algorithm is demonstrated through extensive experiments across four public datasets. The experiment code is available at \url{https://github.com/wu1hong/SCCF}. \end{abstract}
Abstract:We consider the problem of approximating a general Gaussian location mixture by finite mixtures. The minimum order of finite mixtures that achieve a prescribed accuracy (measured by various $f$-divergences) is determined within constant factors for the family of mixing distributions with compactly support or appropriate assumptions on the tail probability including subgaussian and subexponential. While the upper bound is achieved using the technique of local moment matching, the lower bound is established by relating the best approximation error to the low-rank approximation of certain trigonometric moment matrices, followed by a refined spectral analysis of their minimum eigenvalue. In the case of Gaussian mixing distributions, this result corrects a previous lower bound in [Allerton Conference 48 (2010) 620-628].
Abstract:Line features are valid complements for point features in man-made environments. 3D-2D constraints provided by line features have been widely used in Visual Odometry (VO) and Structure-from-Motion (SfM) systems. However, how to accurately solve three-view relative motion only with 2D observations of points and lines in real time has not been fully explored. In this paper, we propose a novel three-view pose solver based on rotation-translation decoupled estimation. First, a high-precision rotation estimation method based on normal vector coplanarity constraints that consider the uncertainty of observations is proposed, which can be solved by Levenberg-Marquardt (LM) algorithm efficiently. Second, a robust linear translation constraint that minimizes the degree of the rotation components and feature observation components in equations is elaborately designed for estimating translations accurately. Experiments on synthetic data and real-world data show that the proposed approach improves both rotation and translation accuracy compared to the classical trifocal-tensor-based method and the state-of-the-art two-view algorithm in outdoor and indoor environments.
Abstract:Visual Place Recognition (VPR) is crucial in computer vision, aiming to retrieve database images similar to a query image from an extensive collection of known images. However, like many vision-related tasks, learning-based VPR often experiences a decline in performance during nighttime due to the scarcity of nighttime images. Specifically, VPR needs to address the cross-domain problem of night-to-day rather than just the issue of a single nighttime domain. In response to these issues, we present NocPlace, which leverages a generated large-scale, multi-view, nighttime VPR dataset to embed resilience against dazzling lights and extreme darkness in the learned global descriptor. Firstly, we establish a day-night urban scene dataset called NightCities, capturing diverse nighttime scenarios and lighting variations across 60 cities globally. Following this, an unpaired image-to-image translation network is trained on this dataset. Using this trained translation network, we process an existing VPR dataset, thereby obtaining its nighttime version. The NocPlace is then fine-tuned using night-style images, the original labels, and descriptors inherited from the Daytime VPR model. Comprehensive experiments on various nighttime VPR test sets reveal that NocPlace considerably surpasses previous state-of-the-art methods.
Abstract:The immense popularity of racket sports has fueled substantial demand in tactical analysis with broadcast videos. However, existing manual methods require laborious annotation, and recent attempts leveraging video perception models are limited to low-level annotations like ball trajectories, overlooking tactics that necessitate an understanding of stroke techniques. State-of-the-art action segmentation models also struggle with technique recognition due to frequent occlusions and motion-induced blurring in racket sports videos. To address these challenges, We propose ViSTec, a Video-based Sports Technique recognition model inspired by human cognition that synergizes sparse visual data with rich contextual insights. Our approach integrates a graph to explicitly model strategic knowledge in stroke sequences and enhance technique recognition with contextual inductive bias. A two-stage action perception model is jointly trained to align with the contextual knowledge in the graph. Experiments demonstrate that our method outperforms existing models by a significant margin. Case studies with experts from the Chinese national table tennis team validate our model's capacity to automate analysis for technical actions and tactical strategies. More details are available at: https://ViSTec2024.github.io/.
Abstract:We study the problem of estimating the score function of an unknown probability distribution $\rho^*$ from $n$ independent and identically distributed observations in $d$ dimensions. Assuming that $\rho^*$ is subgaussian and has a Lipschitz-continuous score function $s^*$, we establish the optimal rate of $\tilde \Theta(n^{-\frac{2}{d+4}})$ for this estimation problem under the loss function $\|\hat s - s^*\|^2_{L^2(\rho^*)}$ that is commonly used in the score matching literature, highlighting the curse of dimensionality where sample complexity for accurate score estimation grows exponentially with the dimension $d$. Leveraging key insights in empirical Bayes theory as well as a new convergence rate of smoothed empirical distribution in Hellinger distance, we show that a regularized score estimator based on a Gaussian kernel attains this rate, shown optimal by a matching minimax lower bound. We also discuss the implication of our theory on the sample complexity of score-based generative models.
Abstract:Large Language Models (LLMs) have emerged as a pivotal force in language technology. Their robust reasoning capabilities and expansive knowledge repositories have enabled exceptional zero-shot generalization abilities across various facets of the natural language processing field, including information retrieval (IR). In this paper, we conduct an in-depth investigation into the utility of documents generated by LLMs for IR. We introduce a simple yet effective framework, Multi-Text Generation Integration (MuGI), to augment existing IR methodologies. Specifically, we prompt LLMs to generate multiple pseudo references and integrate with query for retrieval. The training-free MuGI model eclipses existing query expansion strategies, setting a new standard in sparse retrieval. It outstrips supervised counterparts like ANCE and DPR, achieving a notable over 18% enhancement in BM25 on the TREC DL dataset and a 7.5% increase on BEIR. Through MuGI, we have forged a rapid and high-fidelity re-ranking pipeline. This allows a relatively small 110M parameter retriever to surpass the performance of larger 3B models in in-domain evaluations, while also bridging the gap in out-of-distribution situations. We release our code and all generated references at https://github.com/lezhang7/Retrieval_MuGI.