Abstract:As a cornerstone of modern information access, search engines have become indispensable in everyday life. With the rapid advancements in AI and natural language processing (NLP) technologies, particularly large language models (LLMs), search engines have evolved to support more intuitive and intelligent interactions between users and systems. Conversational search, an emerging paradigm for next-generation search engines, leverages natural language dialogue to facilitate complex and precise information retrieval, thus attracting significant attention. Unlike traditional keyword-based search engines, conversational search systems enhance user experience by supporting intricate queries, maintaining context over multi-turn interactions, and providing robust information integration and processing capabilities. Key components such as query reformulation, search clarification, conversational retrieval, and response generation work in unison to enable these sophisticated interactions. In this survey, we explore the recent advancements and potential future directions in conversational search, examining the critical modules that constitute a conversational search system. We highlight the integration of LLMs in enhancing these systems and discuss the challenges and opportunities that lie ahead in this dynamic field. Additionally, we provide insights into real-world applications and robust evaluations of current conversational search systems, aiming to guide future research and development in conversational search.
Abstract:Conversational search supports multi-turn user-system interactions to solve complex information needs. Different from the traditional single-turn ad-hoc search, conversational search encounters a more challenging problem of context-dependent query understanding with the lengthy and long-tail conversational history context. While conversational query rewriting methods leverage explicit rewritten queries to train a rewriting model to transform the context-dependent query into a stand-stone search query, this is usually done without considering the quality of search results. Conversational dense retrieval methods use fine-tuning to improve a pre-trained ad-hoc query encoder, but they are limited by the conversational search data available for training. In this paper, we leverage both rewritten queries and relevance judgments in the conversational search data to train a better query representation model. The key idea is to align the query representation with those of rewritten queries and relevant documents. The proposed model -- Query Representation Alignment Conversational Dense Retriever, QRACDR, is tested on eight datasets, including various settings in conversational search and ad-hoc search. The results demonstrate the strong performance of QRACDR compared with state-of-the-art methods, and confirm the effectiveness of representation alignment.
Abstract:Personalized conversational information retrieval (CIR) combines conversational and personalizable elements to satisfy various users' complex information needs through multi-turn interaction based on their backgrounds. The key promise is that the personal textual knowledge base (PTKB) can improve the CIR effectiveness because the retrieval results can be more related to the user's background. However, PTKB is noisy: not every piece of knowledge in PTKB is relevant to the specific query at hand. In this paper, we explore and test several ways to select knowledge from PTKB and use it for query reformulation by using a large language model (LLM). The experimental results show the PTKB might not always improve the search results when used alone, but LLM can help generate a more appropriate personalized query when high-quality guidance is provided.
Abstract:Document-level biomedical concept extraction is the task of identifying biomedical concepts mentioned in a given document. Recent advancements have adapted pre-trained language models for this task. However, the scarcity of domain-specific data and the deviation of concepts from their canonical names often hinder these models' effectiveness. To tackle this issue, we employ MetaMapLite, an existing rule-based concept mapping system, to generate additional pseudo-annotated data from PubMed and PMC. The annotated data are used to augment the limited training data. Through extensive experiments, this study demonstrates the utility of a manually crafted concept mapping tool for training a better concept extraction model.
Abstract:Graph-based models and contrastive learning have emerged as prominent methods in Collaborative Filtering (CF). While many existing models in CF incorporate these methods in their design, there seems to be a limited depth of analysis regarding the foundational principles behind them. This paper bridges graph convolution, a pivotal element of graph-based models, with contrastive learning through a theoretical framework. By examining the learning dynamics and equilibrium of the contrastive loss, we offer a fresh lens to understand contrastive learning via graph theory, emphasizing its capability to capture high-order connectivity. Building on this analysis, we further show that the graph convolutional layers often used in graph-based models are not essential for high-order connectivity modeling and might contribute to the risk of oversmoothing. Stemming from our findings, we introduce Simple Contrastive Collaborative Filtering (SCCF), a simple and effective algorithm based on a naive embedding model and a modified contrastive loss. The efficacy of the algorithm is demonstrated through extensive experiments across four public datasets. The experiment code is available at \url{https://github.com/wu1hong/SCCF}. \end{abstract}
Abstract:In this paper, we study how open-source large language models (LLMs) can be effectively deployed for improving query rewriting in conversational search, especially for ambiguous queries. We introduce CHIQ, a two-step method that leverages the capabilities of LLMs to resolve ambiguities in the conversation history before query rewriting. This approach contrasts with prior studies that predominantly use closed-source LLMs to directly generate search queries from conversation history. We demonstrate on five well-established benchmarks that CHIQ leads to state-of-the-art results across most settings, showing highly competitive performances with systems leveraging closed-source LLMs. Our study provides a first step towards leveraging open-source LLMs in conversational search, as a competitive alternative to the prevailing reliance on commercial LLMs. Data, models, and source code will be publicly available upon acceptance at https://github.com/fengranMark/CHIQ.
Abstract:In multi-task learning, the conventional approach involves training a model on multiple tasks simultaneously. However, the training signals from different tasks can interfere with one another, potentially leading to \textit{negative transfer}. To mitigate this, we investigate if modular language models can facilitate positive transfer and systematic generalization. Specifically, we propose a novel modular language model (\texttt{TensorPoly}), that balances parameter efficiency with nuanced routing methods. For \textit{modules}, we reparameterize Low-Rank Adaptation (\texttt{LoRA}) by employing an entangled tensor through the use of tensor product operations and name the resulting approach \texttt{TLoRA}. For \textit{routing function}, we tailor two innovative routing functions according to the granularity: \texttt{TensorPoly-I} which directs to each rank within the entangled tensor while \texttt{TensorPoly-II} offers a finer-grained routing approach targeting each order of the entangled tensor. The experimental results from the multi-task T0-benchmark demonstrate that: 1) all modular LMs surpass the corresponding dense approaches, highlighting the potential of modular language models to mitigate negative inference in multi-task learning and deliver superior outcomes. 2) \texttt{TensorPoly-I} achieves higher parameter efficiency in adaptation and outperforms other modular LMs, which shows the potential of our approach in multi-task transfer learning.
Abstract:Large Language Models (LLMs) are essential tools to collaborate with users on different tasks. Evaluating their performance to serve users' needs in real-world scenarios is important. While many benchmarks have been created, they mainly focus on specific predefined model abilities. Few have covered the intended utilization of LLMs by real users. To address this oversight, we propose benchmarking LLMs from a user perspective in both dataset construction and evaluation designs. We first collect 1846 real-world use cases with 15 LLMs from a user study with 712 participants from 23 countries. These self-reported cases form the User Reported Scenarios(URS) dataset with a categorization of 7 user intents. Secondly, on this authentic multi-cultural dataset, we benchmark 10 LLM services on their efficacy in satisfying user needs. Thirdly, we show that our benchmark scores align well with user-reported experience in LLM interactions across diverse intents, both of which emphasize the overlook of subjective scenarios. In conclusion, our study proposes to benchmark LLMs from a user-centric perspective, aiming to facilitate evaluations that better reflect real user needs. The benchmark dataset and code are available at https://github.com/Alice1998/URS.
Abstract:Conversational search provides a more convenient interface for users to search by allowing multi-turn interaction with the search engine. However, the effectiveness of the conversational dense retrieval methods is limited by the scarcity of training data required for their fine-tuning. Thus, generating more training conversational sessions with relevant labels could potentially improve search performance. Based on the promising capabilities of large language models (LLMs) on text generation, we propose ConvSDG, a simple yet effective framework to explore the feasibility of boosting conversational search by using LLM for session data generation. Within this framework, we design dialogue/session-level and query-level data generation with unsupervised and semi-supervised learning, according to the availability of relevance judgments. The generated data are used to fine-tune the conversational dense retriever. Extensive experiments on four widely used datasets demonstrate the effectiveness and broad applicability of our ConvSDG framework compared with several strong baselines.
Abstract:Conversational systems have made significant progress in generating natural language responses. However, their potential as conversational search systems is currently limited due to their passive role in the information-seeking process. One major limitation is the scarcity of datasets that provide labelled ambiguous questions along with a supporting corpus of documents and relevant clarifying questions. This work aims to tackle the challenge of generating relevant clarifying questions by taking into account the inherent ambiguities present in both user queries and documents. To achieve this, we propose PAQA, an extension to the existing AmbiNQ dataset, incorporating clarifying questions. We then evaluate various models and assess how passage retrieval impacts ambiguity detection and the generation of clarifying questions. By addressing this gap in conversational search systems, we aim to provide additional supervision to enhance their active participation in the information-seeking process and provide users with more accurate results.