Abstract:The Interactive Knowledge Assistant Track (iKAT) 2024 focuses on advancing conversational assistants, able to adapt their interaction and responses from personalized user knowledge. The track incorporates a Personal Textual Knowledge Base (PTKB) alongside Conversational AI tasks, such as passage ranking and response generation. Query Rewrite being an effective approach for resolving conversational context, we explore Large Language Models (LLMs), as query rewriters. Specifically, our submitted runs explore multi-aspect query generation using the MQ4CS framework, which we further enhance with Learned Sparse Retrieval via the SPLADE architecture, coupled with robust cross-encoder models. We also propose an alternative to the previous interleaving strategy, aggregating multiple aspects during the reranking phase. Our findings indicate that multi-aspect query generation is effective in enhancing performance when integrated with advanced retrieval and reranking models. Our results also lead the way for better personalization in Conversational Search, relying on LLMs to integrate personalization within query rewrite, and outperforming human rewrite performance.
Abstract:Generating diverse and effective clarifying questions is crucial for improving query understanding and retrieval performance in open-domain conversational search (CS) systems. We propose AGENT-CQ (Automatic GENeration, and evaluaTion of Clarifying Questions), an end-to-end LLM-based framework addressing the challenges of scalability and adaptability faced by existing methods that rely on manual curation or template-based approaches. AGENT-CQ consists of two stages: a generation stage employing LLM prompting strategies to generate clarifying questions, and an evaluation stage (CrowdLLM) that simulates human crowdsourcing judgments using multiple LLM instances to assess generated questions and answers based on comprehensive quality metrics. Extensive experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality. Human evaluation and CrowdLLM show that the AGENT-CQ - generation stage, consistently outperforms baselines in various aspects of question and answer quality. In retrieval-based evaluation, LLM-generated questions significantly enhance retrieval effectiveness for both BM25 and cross-encoder models compared to human-generated questions.
Abstract:Conversational Search (CS) is the task of retrieving relevant documents from a corpus within a conversational context, combining retrieval with conversational context modeling. With the explosion of Large Language Models (LLMs), the CS field has seen major improvements with LLMs rewriting user queries, accounting for conversational context. However, engaging LLMs at inference time harms efficiency. Current methods address this by distilling embeddings from human-rewritten queries to learn the context modeling task. Yet, these approaches predominantly focus on context modeling, and only treat the contrastive component of the retrieval task within a distillation-independent loss term. To address these limitations, we propose a new distillation method, as a relaxation of the previous objective, unifying retrieval and context modeling. We relax the existing training objectives by distilling similarity scores between conversations and documents, rather than relying solely on representation learning. Our proposed distillation objective allows for more freedom in the representation space and leverages the contrastive nature of document relevance. Through experiments on Learned Sparse Retrieval (LSR) across 5 CS datasets, our approach demonstrates substantial improvements in both in-domain and out-of-domain retrieval performance, outperforming state-of-the-art with gains of up to 6 points in recall for out-of-domain datasets. Additionally, through the relaxation of the objective, we propose a multi-teacher distillation, using multiple LLMs as teachers, yielding additional gains, and outperforming the teachers themselves in in-domain experiments. Finally, analysis of the sparsity of the models reveals that our distillation allows for better control over the sparsity of the trained models.
Abstract:Users post numerous product-related questions on e-commerce platforms, affecting their purchase decisions. Product-related question answering (PQA) entails utilizing product-related resources to provide precise responses to users. We propose a novel task of Multilingual Cross-market Product-based Question Answering (MCPQA) and define the task as providing answers to product-related questions in a main marketplace by utilizing information from another resource-rich auxiliary marketplace in a multilingual context. We introduce a large-scale dataset comprising over 7 million questions from 17 marketplaces across 11 languages. We then perform automatic translation on the Electronics category of our dataset, naming it as McMarket. We focus on two subtasks: review-based answer generation and product-related question ranking. For each subtask, we label a subset of McMarket using an LLM and further evaluate the quality of the annotations via human assessment. We then conduct experiments to benchmark our dataset, using models ranging from traditional lexical models to LLMs in both single-market and cross-market scenarios across McMarket and the corresponding LLM subset. Results show that incorporating cross-market information significantly enhances performance in both tasks.
Abstract:Large language models (LLMs) often generate content with unsupported or unverifiable content, known as "hallucinations." To address this, retrieval-augmented LLMs are employed to include citations in their content, grounding the content in verifiable sources. Despite such developments, manually assessing how well a citation supports the associated statement remains a major challenge. Previous studies tackle this challenge by leveraging faithfulness metrics to estimate citation support automatically. However, they limit this citation support estimation to a binary classification scenario, neglecting fine-grained citation support in practical scenarios. To investigate the effectiveness of faithfulness metrics in fine-grained scenarios, we propose a comparative evaluation framework that assesses the metric effectiveness in distinguishing citations between three-category support levels: full, partial, and no support. Our framework employs correlation analysis, classification evaluation, and retrieval evaluation to measure the alignment between metric scores and human judgments comprehensively. Our results indicate no single metric consistently excels across all evaluations, highlighting the complexity of accurately evaluating fine-grained support levels. Particularly, we find that the best-performing metrics struggle to distinguish partial support from full or no support. Based on these findings, we provide practical recommendations for developing more effective metrics.
Abstract:The LLMJudge challenge is organized as part of the LLM4Eval workshop at SIGIR 2024. Test collections are essential for evaluating information retrieval (IR) systems. The evaluation and tuning of a search system is largely based on relevance labels, which indicate whether a document is useful for a specific search and user. However, collecting relevance judgments on a large scale is costly and resource-intensive. Consequently, typical experiments rely on third-party labelers who may not always produce accurate annotations. The LLMJudge challenge aims to explore an alternative approach by using LLMs to generate relevance judgments. Recent studies have shown that LLMs can generate reliable relevance judgments for search systems. However, it remains unclear which LLMs can match the accuracy of human labelers, which prompts are most effective, how fine-tuned open-source LLMs compare to closed-source LLMs like GPT-4, whether there are biases in synthetically generated data, and if data leakage affects the quality of generated labels. This challenge will investigate these questions, and the collected data will be released as a package to support automatic relevance judgment research in information retrieval and search.
Abstract:The first edition of the workshop on Large Language Model for Evaluation in Information Retrieval (LLM4Eval 2024) took place in July 2024, co-located with the ACM SIGIR Conference 2024 in the USA (SIGIR 2024). The aim was to bring information retrieval researchers together around the topic of LLMs for evaluation in information retrieval that gathered attention with the advancement of large language models and generative AI. Given the novelty of the topic, the workshop was focused around multi-sided discussions, namely panels and poster sessions of the accepted proceedings papers.
Abstract:Existing generative retrieval (GR) approaches rely on training-based indexing, i.e., fine-tuning a model to memorise the associations between a query and the document identifier (docid) of a relevant document. Training-based indexing has three limitations: high training overhead, under-utilization of the pre-trained knowledge of large language models (LLMs), and challenges in adapting to a dynamic document corpus. To address the above issues, we propose a novel few-shot indexing-based GR framework (Few-Shot GR). It has a novel few-shot indexing process, where we prompt an LLM to generate docids for all documents in a corpus, ultimately creating a docid bank for the entire corpus. During retrieval, we feed a query to the same LLM and constrain it to generate a docid within the docid bank created during indexing, and then map the generated docid back to its corresponding document. Few-Shot GR relies solely on prompting an LLM without requiring any training, making it more efficient. Moreover, we devise few-shot indexing with one-to-many mapping to further enhance Few-Shot GR. Experiments show that Few-Shot GR achieves superior performance to state-of-the-art GR methods that require heavy training.
Abstract:At its core, information access and seeking is an interactive process. In existing search engines, interactions are limited to a few pre-defined actions, such as "requery", "click on a document", "scrolling up/down", "going to the next result page", "leaving the search engine", etc. A major benefit of moving towards generative IR systems is enabling users with a richer expression of information need and feedback and free-form interactions in natural language and beyond. In other words, the actions users take are no longer limited by the clickable links and buttons available on the search engine result page and users can express themselves freely through natural language. This can go even beyond natural language, through images, videos, gestures, and sensors using multi-modal generative IR systems. This chapter briefly discusses the role of interaction in generative IR systems. We will first discuss different ways users can express their information needs by interacting with generative IR systems. We then explain how users can provide explicit or implicit feedback to generative IR systems and how they can consume such feedback. Next, we will cover how users interactively can refine retrieval results. We will expand upon mixed-initiative interactions and discuss clarification and preference elicitation in more detail. We then discuss proactive generative IR systems, including context-aware recommendation, following up past conversations, contributing to multi-party conversations, and feedback requests. Providing explanation is another interaction type that we briefly discuss in this chapter. We will also briefly describe multi-modal interactions in generative information retrieval. Finally, we describe emerging frameworks and solutions for user interfaces with generative AI systems.
Abstract:Large language models (LLMs) often produce unsupported or unverifiable information, known as "hallucinations." To mitigate this, retrieval-augmented LLMs incorporate citations, grounding the content in verifiable sources. Despite such developments, manually assessing how well a citation supports the associated statement remains a major challenge. Previous studies use faithfulness metrics to estimate citation support automatically but are limited to binary classification, overlooking fine-grained citation support in practical scenarios. To investigate the effectiveness of faithfulness metrics in fine-grained scenarios, we propose a comparative evaluation framework that assesses the metric effectiveness in distinguishinging citations between three-category support levels: full, partial, and no support. Our framework employs correlation analysis, classification evaluation, and retrieval evaluation to measure the alignment between metric scores and human judgments comprehensively. Our results show no single metric consistently excels across all evaluations, revealing the complexity of assessing fine-grained support. Based on the findings, we provide practical recommendations for developing more effective metrics.