Abstract:In next basket recommendation (NBR) a set of items is recommended to users based on their historical basket sequences. In many domains, the recommended baskets consist of both repeat items and explore items. Some state-of-the-art NBR methods are heavily biased to recommend repeat items so as to maximize utility. The evaluation and optimization of beyond-accuracy objectives for NBR, such as item fairness and diversity, has attracted increasing attention. How can such beyond-accuracy objectives be pursued in the presence of heavy repeat bias? We find that only optimizing diversity or item fairness without considering repeat bias may cause NBR algorithms to recommend more repeat items. To solve this problem, we propose a model-agnostic repeat-bias-aware optimization algorithm to post-process the recommended results obtained from NBR methods with the objective of mitigating repeat bias when optimizing diversity or item fairness. We consider multiple variations of our optimization algorithm to cater to multiple NBR methods. Experiments on three real-world grocery shopping datasets show that the proposed algorithms can effectively improve diversity and item fairness, and mitigate repeat bias at acceptable Recall loss.
Abstract:Next basket recommendation (NBR) is a special type of sequential recommendation that is increasingly receiving attention. So far, most NBR studies have focused on optimizing the accuracy of the recommendation, whereas optimizing for beyond-accuracy metrics, e.g., item fairness and diversity remains largely unexplored. Recent studies into NBR have found a substantial performance difference between recommending repeat items and explore items. Repeat items contribute most of the users' perceived accuracy compared with explore items. Informed by these findings, we identify a potential "short-cut" to optimize for beyond-accuracy metrics while maintaining high accuracy. To leverage and verify the existence of such short-cuts, we propose a plug-and-play two-step repetition-exploration (TREx) framework that treats repeat items and explores items separately, where we design a simple yet highly effective repetition module to ensure high accuracy, while two exploration modules target optimizing only beyond-accuracy metrics. Experiments are performed on two widely-used datasets w.r.t. a range of beyond-accuracy metrics, viz. five fairness metrics and three diversity metrics. Our experimental results verify the effectiveness of TREx. Prima facie, this appears to be good news: we can achieve high accuracy and improved beyond-accuracy metrics at the same time. However, we argue that the real-world value of our algorithmic solution, TREx, is likely to be limited and reflect on the reasonableness of the evaluation setup. We end up challenging existing evaluation paradigms, particularly in the context of beyond-accuracy metrics, and provide insights for researchers to navigate potential pitfalls and determine reasonable metrics to consider when optimizing for accuracy and beyond-accuracy metrics.