Abstract:Recent large language models (LLMs) have demonstrated exceptional performance on general-purpose text embedding tasks. While dense embeddings have dominated related research, we introduce the first Lexicon-based EmbeddiNgS (LENS) leveraging LLMs that achieve competitive performance on these tasks. Regarding the inherent tokenization redundancy issue and unidirectional attention limitations in traditional causal LLMs, LENS consolidates the vocabulary space through token embedding clustering, and investigates bidirectional attention and various pooling strategies. Specifically, LENS simplifies lexicon matching by assigning each dimension to a specific token cluster, where semantically similar tokens are grouped together, and unlocking the full potential of LLMs through bidirectional attention. Extensive experiments demonstrate that LENS outperforms dense embeddings on the Massive Text Embedding Benchmark (MTEB), delivering compact feature representations that match the sizes of dense counterparts. Notably, combining LENSE with dense embeddings achieves state-of-the-art performance on the retrieval subset of MTEB (i.e. BEIR).
Abstract:Set compositional and negated queries are crucial for expressing complex information needs and enable the discovery of niche items like Books about non-European monarchs. Despite the recent advances in LLMs, first-stage ranking remains challenging due to the requirement of encoding documents and queries independently from each other. This limitation calls for constructing compositional query representations that encapsulate logical operations or negations, and can be used to match relevant documents effectively. In the first part of this work, we explore constructing such representations in a zero-shot setting using vector operations between lexically grounded Learned Sparse Retrieval (LSR) representations. Specifically, we introduce Disentangled Negation that penalizes only the negated parts of a query, and a Combined Pseudo-Term approach that enhances LSRs ability to handle intersections. We find that our zero-shot approach is competitive and often outperforms retrievers fine-tuned on compositional data, highlighting certain limitations of LSR and Dense Retrievers. Finally, we address some of these limitations and improve LSRs representation power for negation, by allowing them to attribute negative term scores and effectively penalize documents containing the negated terms.
Abstract:Learned Sparse Retrieval (LSR) models use vocabularies from pre-trained transformers, which often split entities into nonsensical fragments. Splitting entities can reduce retrieval accuracy and limits the model's ability to incorporate up-to-date world knowledge not included in the training data. In this work, we enhance the LSR vocabulary with Wikipedia concepts and entities, enabling the model to resolve ambiguities more effectively and stay current with evolving knowledge. Central to our approach is a Dynamic Vocabulary (DyVo) head, which leverages existing entity embeddings and an entity retrieval component that identifies entities relevant to a query or document. We use the DyVo head to generate entity weights, which are then merged with word piece weights to create joint representations for efficient indexing and retrieval using an inverted index. In experiments across three entity-rich document ranking datasets, the resulting DyVo model substantially outperforms state-of-the-art baselines.
Abstract:TableQA is the task of answering questions over tables of structured information, returning individual cells or tables as output. TableQA research has focused primarily on high-resource languages, leaving medium- and low-resource languages with little progress due to scarcity of annotated data and neural models. We address this gap by introducing a fully automatic large-scale tableQA data generation process for low-resource languages with limited budget. We incorporate our data generation method on two Indic languages, Bengali and Hindi, which have no tableQA datasets or models. TableQA models trained on our large-scale datasets outperform state-of-the-art LLMs. We further study the trained models on different aspects, including mathematical reasoning capabilities and zero-shot cross-lingual transfer. Our work is the first on low-resource tableQA focusing on scalable data generation and evaluation procedures. Our proposed data generation method can be applied to any low-resource language with a web presence. We release datasets, models, and code (https://github.com/kolk/Low-Resource-TableQA-Indic-languages).
Abstract:This study aims to develop models that generate corpus informed clarifying questions for web search, in a way that ensures the questions align with the available information in the retrieval corpus. We demonstrate the effectiveness of Retrieval Augmented Language Models (RAG) in this process, emphasising their ability to (i) jointly model the user query and retrieval corpus to pinpoint the uncertainty and ask for clarifications end-to-end and (ii) model more evidence documents, which can be used towards increasing the breadth of the questions asked. However, we observe that in current datasets search intents are largely unsupported by the corpus, which is problematic both for training and evaluation. This causes question generation models to ``hallucinate'', ie. suggest intents that are not in the corpus, which can have detrimental effects in performance. To address this, we propose dataset augmentation methods that align the ground truth clarifications with the retrieval corpus. Additionally, we explore techniques to enhance the relevance of the evidence pool during inference, but find that identifying ground truth intents within the corpus remains challenging. Our analysis suggests that this challenge is partly due to the bias of current datasets towards clarification taxonomies and calls for data that can support generating corpus-informed clarifications.
Abstract:Next basket recommendation (NBR) is a special type of sequential recommendation that is increasingly receiving attention. So far, most NBR studies have focused on optimizing the accuracy of the recommendation, whereas optimizing for beyond-accuracy metrics, e.g., item fairness and diversity remains largely unexplored. Recent studies into NBR have found a substantial performance difference between recommending repeat items and explore items. Repeat items contribute most of the users' perceived accuracy compared with explore items. Informed by these findings, we identify a potential "short-cut" to optimize for beyond-accuracy metrics while maintaining high accuracy. To leverage and verify the existence of such short-cuts, we propose a plug-and-play two-step repetition-exploration (TREx) framework that treats repeat items and explores items separately, where we design a simple yet highly effective repetition module to ensure high accuracy, while two exploration modules target optimizing only beyond-accuracy metrics. Experiments are performed on two widely-used datasets w.r.t. a range of beyond-accuracy metrics, viz. five fairness metrics and three diversity metrics. Our experimental results verify the effectiveness of TREx. Prima facie, this appears to be good news: we can achieve high accuracy and improved beyond-accuracy metrics at the same time. However, we argue that the real-world value of our algorithmic solution, TREx, is likely to be limited and reflect on the reasonableness of the evaluation setup. We end up challenging existing evaluation paradigms, particularly in the context of beyond-accuracy metrics, and provide insights for researchers to navigate potential pitfalls and determine reasonable metrics to consider when optimizing for accuracy and beyond-accuracy metrics.
Abstract:In this work, we introduce a new unsupervised embedding method, Meta-Task Prompting with Explicit One-Word Limitation (MetaEOL), for generating high-quality sentence embeddings from Large Language Models (LLMs) without the need for model fine-tuning or task-specific engineering. Leveraging meta-task prompting, MetaEOL guides LLMs to produce embeddings through a series of carefully designed prompts that address multiple representational aspects. Our comprehensive experiments demonstrate that embeddings averaged from various meta-tasks yield competitive performance on Semantic Textual Similarity (STS) benchmarks and excel in downstream tasks, surpassing contrastive-trained models. Our findings suggest a new scaling law for embedding generation, offering a versatile, resource-efficient approach for embedding extraction across diverse sentence-centric scenarios.
Abstract:Recent studies demonstrate that query expansions generated by large language models (LLMs) can considerably enhance information retrieval systems by generating hypothetical documents that answer the queries as expansions. However, challenges arise from misalignments between the expansions and the retrieval corpus, resulting in issues like hallucinations and outdated information due to the limited intrinsic knowledge of LLMs. Inspired by Pseudo Relevance Feedback (PRF), we introduce Corpus-Steered Query Expansion (CSQE) to promote the incorporation of knowledge embedded within the corpus. CSQE utilizes the relevance assessing capability of LLMs to systematically identify pivotal sentences in the initially-retrieved documents. These corpus-originated texts are subsequently used to expand the query together with LLM-knowledge empowered expansions, improving the relevance prediction between the query and the target documents. Extensive experiments reveal that CSQE exhibits strong performance without necessitating any training, especially with queries for which LLMs lack knowledge.
Abstract:Vision-language models (VLMs) mainly rely on contrastive training to learn general-purpose representations of images and captions. We focus on the situation when one image is associated with several captions, each caption containing both information shared among all captions and unique information per caption about the scene depicted in the image. In such cases, it is unclear whether contrastive losses are sufficient for learning task-optimal representations that contain all the information provided by the captions or whether the contrastive learning setup encourages the learning of a simple shortcut that minimizes contrastive loss. We introduce synthetic shortcuts for vision-language: a training and evaluation framework where we inject synthetic shortcuts into image-text data. We show that contrastive VLMs trained from scratch or fine-tuned with data containing these synthetic shortcuts mainly learn features that represent the shortcut. Hence, contrastive losses are not sufficient to learn task-optimal representations, i.e., representations that contain all task-relevant information shared between the image and associated captions. We examine two methods to reduce shortcut learning in our training and evaluation framework: (i) latent target decoding and (ii) implicit feature modification. We show empirically that both methods improve performance on the evaluation task, but only partly reduce shortcut learning when training and evaluating with our shortcut learning framework. Hence, we show the difficulty and challenge of our shortcut learning framework for contrastive vision-language representation learning.
Abstract:Learned sparse retrieval (LSR) is a family of neural methods that encode queries and documents into sparse lexical vectors that can be indexed and retrieved efficiently with an inverted index. We explore the application of LSR to the multi-modal domain, with a focus on text-image retrieval. While LSR has seen success in text retrieval, its application in multimodal retrieval remains underexplored. Current approaches like LexLIP and STAIR require complex multi-step training on massive datasets. Our proposed approach efficiently transforms dense vectors from a frozen dense model into sparse lexical vectors. We address issues of high dimension co-activation and semantic deviation through a new training algorithm, using Bernoulli random variables to control query expansion. Experiments with two dense models (BLIP, ALBEF) and two datasets (MSCOCO, Flickr30k) show that our proposed algorithm effectively reduces co-activation and semantic deviation. Our best-performing sparsified model outperforms state-of-the-art text-image LSR models with a shorter training time and lower GPU memory requirements. Our approach offers an effective solution for training LSR retrieval models in multimodal settings. Our code and model checkpoints are available at github.com/thongnt99/lsr-multimodal