Abstract:Document retrieval is one of the most challenging tasks in Information Retrieval. It requires handling longer contexts, often resulting in higher query latency and increased computational overhead. Recently, Learned Sparse Retrieval (LSR) has emerged as a promising approach to address these challenges. Some have proposed adapting the LSR approach to longer documents by aggregating segmented document using different post-hoc methods, including n-grams and proximity scores, adjusting representations, and learning to ensemble all signals. In this study, we aim to reproduce and examine the mechanisms of adapting LSR for long documents. Our reproducibility experiments confirmed the importance of specific segments, with the first segment consistently dominating document retrieval performance. Furthermore, We re-evaluate recently proposed methods -- ExactSDM and SoftSDM -- across varying document lengths, from short (up to 2 segments) to longer (3+ segments). We also designed multiple analyses to probe the reproduced methods and shed light on the impact of global information on adapting LSR to longer contexts. The complete code and implementation for this project is available at: https://github.com/lionisakis/Reproducibilitiy-lsr-long.
Abstract:This paper presents ConvRerank, a conversational passage re-ranker that employs a newly developed pseudo-labeling approach. Our proposed view-ensemble method enhances the quality of pseudo-labeled data, thus improving the fine-tuning of ConvRerank. Our experimental evaluation on benchmark datasets shows that combining ConvRerank with a conversational dense retriever in a cascaded manner achieves a good balance between effectiveness and efficiency. Compared to baseline methods, our cascaded pipeline demonstrates lower latency and higher top-ranking effectiveness. Furthermore, the in-depth analysis confirms the potential of our approach to improving the effectiveness of conversational search.
Abstract:Recently, much progress in natural language processing has been driven by deep contextualized representations pretrained on large corpora. Typically, the fine-tuning on these pretrained models for a specific downstream task is based on single-view learning, which is however inadequate as a sentence can be interpreted differently from different perspectives. Therefore, in this work, we propose a text-to-text multi-view learning framework by incorporating an additional view -- the text generation view -- into a typical single-view passage ranking model. Empirically, the proposed approach is of help to the ranking performance compared to its single-view counterpart. Ablation studies are also reported in the paper.