Abstract:This paper presents ConvRerank, a conversational passage re-ranker that employs a newly developed pseudo-labeling approach. Our proposed view-ensemble method enhances the quality of pseudo-labeled data, thus improving the fine-tuning of ConvRerank. Our experimental evaluation on benchmark datasets shows that combining ConvRerank with a conversational dense retriever in a cascaded manner achieves a good balance between effectiveness and efficiency. Compared to baseline methods, our cascaded pipeline demonstrates lower latency and higher top-ranking effectiveness. Furthermore, the in-depth analysis confirms the potential of our approach to improving the effectiveness of conversational search.
Abstract:Prediction using the ground truth sounds like an oxymoron in machine learning. However, such an unrealistic setting was used in hundreds, if not thousands of papers in the area of finding graph representations. To evaluate the multi-label problem of node classification by using the obtained representations, many works assume in the prediction stage that the number of labels of each test instance is known. In practice such ground truth information is rarely available, but we point out that such an inappropriate setting is now ubiquitous in this research area. We detailedly investigate why the situation occurs. Our analysis indicates that with unrealistic information, the performance is likely over-estimated. To see why suitable predictions were not used, we identify difficulties in applying some multi-label techniques. For the use in future studies, we propose simple and effective settings without using practically unknown information. Finally, we take this chance to conduct a fair and serious comparison of major graph-representation learning methods on multi-label node classification.
Abstract:In this paper, we propose a two-stage ranking approach for recommending linear TV programs. The proposed approach first leverages user viewing patterns regarding time and TV channels to identify potential candidates for recommendation and then further leverages user preferences to rank these candidates given textual information about programs. To evaluate the method, we conduct empirical studies on a real-world TV dataset, the results of which demonstrate the superior performance of our model in terms of both recommendation accuracy and time efficiency.
Abstract:In this paper, we propose a novel optimization criterion that leverages features of the skew normal distribution to better model the problem of personalized recommendation. Specifically, the developed criterion borrows the concept and the flexibility of the skew normal distribution, based on which three hyperparameters are attached to the optimization criterion. Furthermore, from a theoretical point of view, we not only establish the relation between the maximization of the proposed criterion and the shape parameter in the skew normal distribution, but also provide the analogies and asymptotic analysis of the proposed criterion to maximization of the area under the ROC curve. Experimental results conducted on a range of large-scale real-world datasets show that our model significantly outperforms the state of the art and yields consistently best performance on all tested datasets.
Abstract:Passage retrieval in a conversational context is essential for many downstream applications; it is however extremely challenging due to limited data resources. To address this problem, we present an effective multi-stage pipeline for passage ranking in conversational search that integrates a widely-used IR system with a conversational query reformulation module. Along these lines, we propose two simple yet effective query reformulation approaches: historical query expansion (HQE) and neural transfer reformulation (NTR). Whereas HQE applies query expansion, a traditional IR query reformulation technique, NTR transfers human knowledge of conversational query understanding to a neural query reformulation model. The proposed HQE method was the top-performing submission of automatic systems in CAsT Track at TREC 2019. Building on this, our NTR approach improves an additional 18% over that best entry in terms of NDCG@3. We further analyze the distinct behaviors of the two approaches, and show that fusing their output reduces the performance gap (measured in NDCG@3) between the manually-rewritten and automatically-generated queries to 4 from 22 points when compared with the best CAsT submission.
Abstract:This paper presents an empirical study of conversational question reformulation (CQR) with sequence-to-sequence architectures and pretrained language models (PLMs). We leverage PLMs to address the strong token-to-token independence assumption made in the common objective, maximum likelihood estimation, for the CQR task. In CQR benchmarks of task-oriented dialogue systems, we evaluate fine-tuned PLMs on the recently-introduced CANARD dataset as an in-domain task and validate the models using data from the TREC 2019 CAsT Track as an out-domain task. Examining a variety of architectures with different numbers of parameters, we demonstrate that the recent text-to-text transfer transformer (T5) achieves the best results both on CANARD and CAsT with fewer parameters, compared to similar transformer architectures.
Abstract:We applied the T5 sequence-to-sequence model to tackle the AI2 WinoGrande Challenge by decomposing each example into two input text strings, each containing a hypothesis, and using the probabilities assigned to the "entailment" token as a score of the hypothesis. Our first (and only) submission to the official leaderboard yielded 0.7673 AUC on March 13, 2020, which is the best known result at this time and beats the previous state of the art by over five points.
Abstract:Cross-domain collaborative filtering (CF) aims to alleviate data sparsity in single-domain CF by leveraging knowledge transferred from related domains. Many traditional methods focus on enriching compared neighborhood relations in CF directly to address the sparsity problem. In this paper, we propose superhighway construction, an alternative explicit relation-enrichment procedure, to improve recommendations by enhancing cross-domain connectivity. Specifically, assuming partially overlapped items (users), superhighway bypasses multi-hop inter-domain paths between cross-domain users (items, respectively) with direct paths to enrich the cross-domain connectivity. The experiments conducted on a real-world cross-region music dataset and a cross-platform movie dataset show that the proposed superhighway construction significantly improves recommendation performance in both target and source domains.