Abstract:The Internet produces a continuous stream of new documents and user-generated queries. These naturally change over time based on events in the world and the evolution of language. Neural retrieval models that were trained once on a fixed set of query-document pairs will quickly start misrepresenting newly-created content and queries, leading to less effective retrieval. Traditional statistical sparse retrieval can update collection statistics to reflect these changes in the use of language in documents and queries. In contrast, continued fine-tuning of the language model underlying neural retrieval approaches such as DPR and ColBERT creates incompatibility with previously-encoded documents. Re-encoding and re-indexing all previously-processed documents can be costly. In this work, we explore updating a neural dual encoder retrieval model without reprocessing past documents in the stream. We propose MURR, a model updating strategy with regularized replay, to ensure the model can still faithfully search existing documents without reprocessing, while continuing to update the model for the latest topics. In our simulated streaming environments, we show that fine-tuning models using MURR leads to more effective and more consistent retrieval results than other strategies as the stream of documents and queries progresses.
Abstract:We present the challenging task of automatically creating a high-level Wikipedia-style article that aggregates information from multiple diverse videos about real-world events, such as natural disasters or political elections. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text and existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
Abstract:Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
Abstract:In this work, we tackle the problem of text-to-video retrieval (T2VR). Inspired by the success of late interaction techniques in text-document, text-image, and text-video retrieval, our approach, Video-ColBERT, introduces a simple and efficient mechanism for fine-grained similarity assessment between queries and videos. Video-ColBERT is built upon 3 main components: a fine-grained spatial and temporal token-wise interaction, query and visual expansions, and a dual sigmoid loss during training. We find that this interaction and training paradigm leads to strong individual, yet compatible, representations for encoding video content. These representations lead to increases in performance on common text-to-video retrieval benchmarks compared to other bi-encoder methods.
Abstract:The fundamental property of Cranfield-style evaluations, that system rankings are stable even when assessors disagree on individual relevance decisions, was validated on traditional test collections. However, the paradigm shift towards neural retrieval models affected the characteristics of modern test collections, e.g., documents are short, judged with four grades of relevance, and information needs have no descriptions or narratives. Under these changes, it is unclear whether assessor disagreement remains negligible for system comparisons. We investigate this aspect under the additional condition that the few modern test collections are heavily re-used. Given more possible query interpretations due to less formalized information needs, an ''expiration date'' for test collections might be needed if top-effectiveness requires overfitting to a single interpretation of relevance. We run a reproducibility study and re-annotate the relevance judgments of the 2019 TREC Deep Learning track. We can reproduce prior work in the neural retrieval setting, showing that assessor disagreement does not affect system rankings. However, we observe that some models substantially degrade with our new relevance judgments, and some have already reached the effectiveness of humans as rankers, providing evidence that test collections can expire.
Abstract:We introduce Rank1, the first reranking model trained to take advantage of test-time compute. Rank1 demonstrates the applicability within retrieval of using a reasoning language model (i.e. OpenAI's o1, Deepseek's R1, etc.) for distillation in order to rapidly improve the performance of a smaller model. We gather and open-source a dataset of more than 600,000 examples of R1 reasoning traces from queries and passages in MS MARCO. Models trained on this dataset show: (1) state-of-the-art performance on advanced reasoning and instruction following datasets; (2) work remarkably well out of distribution due to the ability to respond to user-input prompts; and (3) have explainable reasoning chains that can be given to users or RAG-based systems. Further, we demonstrate that quantized versions of these models retain strong performance while using less compute/memory. Overall, Rank1 shows that test-time compute allows for a fundamentally new type of explainable and performant reranker model for search.
Abstract:Retrieval systems generally focus on web-style queries that are short and underspecified. However, advances in language models have facilitated the nascent rise of retrieval models that can understand more complex queries with diverse intents. However, these efforts have focused exclusively on English; therefore, we do not yet understand how they work across languages. We introduce mFollowIR, a multilingual benchmark for measuring instruction-following ability in retrieval models. mFollowIR builds upon the TREC NeuCLIR narratives (or instructions) that span three diverse languages (Russian, Chinese, Persian) giving both query and instruction to the retrieval models. We make small changes to the narratives and isolate how well retrieval models can follow these nuanced changes. We present results for both multilingual (XX-XX) and cross-lingual (En-XX) performance. We see strong cross-lingual performance with English-based retrievers that trained using instructions, but find a notable drop in performance in the multilingual setting, indicating that more work is needed in developing data for instruction-based multilingual retrievers.
Abstract:Efficiently retrieving and synthesizing information from large-scale multimodal collections has become a critical challenge. However, existing video retrieval datasets suffer from scope limitations, primarily focusing on matching descriptive but vague queries with small collections of professionally edited, English-centric videos. To address this gap, we introduce $\textbf{MultiVENT 2.0}$, a large-scale, multilingual event-centric video retrieval benchmark featuring a collection of more than 218,000 news videos and 3,906 queries targeting specific world events. These queries specifically target information found in the visual content, audio, embedded text, and text metadata of the videos, requiring systems leverage all these sources to succeed at the task. Preliminary results show that state-of-the-art vision-language models struggle significantly with this task, and while alternative approaches show promise, they are still insufficient to adequately address this problem. These findings underscore the need for more robust multimodal retrieval systems, as effective video retrieval is a crucial step towards multimodal content understanding and generation tasks.
Abstract:Legal professionals need to write analyses that rely on citations to relevant precedents, i.e., previous case decisions. Intelligent systems assisting legal professionals in writing such documents provide great benefits but are challenging to design. Such systems need to help locate, summarize, and reason over salient precedents in order to be useful. To enable systems for such tasks, we work with legal professionals to transform a large open-source legal corpus into a dataset supporting two important backbone tasks: information retrieval (IR) and retrieval-augmented generation (RAG). This dataset CLERC (Case Law Evaluation Retrieval Corpus), is constructed for training and evaluating models on their ability to (1) find corresponding citations for a given piece of legal analysis and to (2) compile the text of these citations (as well as previous context) into a cogent analysis that supports a reasoning goal. We benchmark state-of-the-art models on CLERC, showing that current approaches still struggle: GPT-4o generates analyses with the highest ROUGE F-scores but hallucinates the most, while zero-shot IR models only achieve 48.3% recall@1000.
Abstract:High Recall Retrieval (HRR), such as eDiscovery and medical systematic review, is a search problem that optimizes the cost of retrieving most relevant documents in a given collection. Iterative approaches, such as iterative relevance feedback and uncertainty sampling, are shown to be effective under various operational scenarios. Despite neural models demonstrating success in other text-related tasks, linear models such as logistic regression, in general, are still more effective and efficient in HRR since the model is trained and retrieves documents from the same fixed collection. In this work, we leverage SPLADE, an efficient retrieval model that transforms documents into contextualized sparse vectors, for HRR. Our approach combines the best of both worlds, leveraging both the contextualization from pretrained language models and the efficiency of linear models. It reduces 10% and 18% of the review cost in two HRR evaluation collections under a one-phase review workflow with a target recall of 80%. The experiment is implemented with TARexp and is available at https://github.com/eugene-yang/LSR-for-TAR.