Abstract:How can a monolingual English speaker determine whether an automatic translation in French is good enough to be shared? Existing MT error detection and quality estimation (QE) techniques do not address this practical scenario. We introduce AskQE, a question generation and answering framework designed to detect critical MT errors and provide actionable feedback, helping users decide whether to accept or reject MT outputs even without the knowledge of the target language. Using ContraTICO, a dataset of contrastive synthetic MT errors in the COVID-19 domain, we explore design choices for AskQE and develop an optimized version relying on LLaMA-3 70B and entailed facts to guide question generation. We evaluate the resulting system on the BioMQM dataset of naturally occurring MT errors, where AskQE has higher Kendall's Tau correlation and decision accuracy with human ratings compared to other QE metrics.
Abstract:Large language models (LLMs) pre-trained predominantly on English text exhibit surprising multilingual capabilities, yet the mechanisms driving cross-lingual generalization remain poorly understood. This work investigates how the alignment of representations for text written in different languages correlates with LLM performance on natural language understanding tasks and translation tasks, both at the language and the instance level. For this purpose, we introduce cross-lingual alignment metrics such as the Discriminative Alignment Index (DALI) to quantify the alignment at an instance level for discriminative tasks. Through experiments on three natural language understanding tasks (Belebele, XStoryCloze, XCOPA), and machine translation, we find that while cross-lingual alignment metrics strongly correlate with task accuracy at the language level, the sample-level alignment often fails to distinguish correct from incorrect predictions, exposing alignment as a necessary but insufficient condition for success.
Abstract:Large Language Model (LLM)-powered agents have unlocked new possibilities for automating human tasks. While prior work has focused on well-defined tasks with specified goals, the capabilities of agents in creative design tasks with open-ended goals remain underexplored. We introduce GraphicBench, a new planning benchmark for graphic design that covers 1,079 user queries and input images across four design types. We further present GraphicTown, an LLM agent framework with three design experts and 46 actions (tools) to choose from for executing each step of the planned workflows in web environments. Experiments with six LLMs demonstrate their ability to generate workflows that integrate both explicit design constraints from user queries and implicit commonsense constraints. However, these workflows often do not lead to successful execution outcomes, primarily due to challenges in: (1) reasoning about spatial relationships, (2) coordinating global dependencies across experts, and (3) retrieving the most appropriate action per step. We envision GraphicBench as a challenging yet valuable testbed for advancing LLM-agent planning and execution in creative design tasks.
Abstract:Can we improve machine translation (MT) with LLMs by rewriting their inputs automatically? Users commonly rely on the intuition that well-written text is easier to translate when using off-the-shelf MT systems. LLMs can rewrite text in many ways but in the context of MT, these capabilities have been primarily exploited to rewrite outputs via post-editing. We present an empirical study of 21 input rewriting methods with 3 open-weight LLMs for translating from English into 6 target languages. We show that text simplification is the most effective MT-agnostic rewrite strategy and that it can be improved further when using quality estimation to assess translatability. Human evaluation further confirms that simplified rewrites and their MT outputs both largely preserve the original meaning of the source and MT. These results suggest LLM-assisted input rewriting as a promising direction for improving translations.
Abstract:This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Abstract:Recent advances in automatic quality estimation for machine translation have exclusively focused on written language, leaving the speech modality underexplored. In this work, we formulate the task of quality estimation for speech translation (SpeechQE), construct a benchmark, and evaluate a family of systems based on cascaded and end-to-end architectures. In this process, we introduce a novel end-to-end system leveraging pre-trained text LLM. Results suggest that end-to-end approaches are better suited to estimating the quality of direct speech translation than using quality estimation systems designed for text in cascaded systems. More broadly, we argue that quality estimation of speech translation needs to be studied as a separate problem from that of text, and release our data and models to guide further research in this space.
Abstract:Vocabulary adaptation, which integrates new vocabulary into pre-trained language models (LMs), enables expansion to new languages and mitigates token over-fragmentation. However, existing approaches are limited by their reliance on heuristic or external embeddings. We propose VocADT, a novel method for vocabulary adaptation using adapter modules that are trained to learn the optimal linear combination of existing embeddings while keeping the model's weights fixed. VocADT offers a flexible and scalable solution without requiring external resources or language constraints. Across 11 languages-with various scripts, resource availability, and fragmentation-we demonstrate that VocADT outperforms the original Mistral model and other baselines across various multilingual tasks. We find that Latin-script languages and highly fragmented languages benefit the most from vocabulary adaptation. We further fine-tune the adapted model on the generative task of machine translation and find that vocabulary adaptation is still beneficial after fine-tuning and that VocADT is the most effective method.
Abstract:Questions involving commonsense reasoning about everyday situations often admit many $\textit{possible}$ or $\textit{plausible}$ answers. In contrast, multiple-choice question (MCQ) benchmarks for commonsense reasoning require a hard selection of a single correct answer, which, in principle, should represent the $\textit{most}$ plausible answer choice. On $250$ MCQ items sampled from two commonsense reasoning benchmarks, we collect $5,000$ independent plausibility judgments on answer choices. We find that for over 20% of the sampled MCQs, the answer choice rated most plausible does not match the benchmark gold answers; upon manual inspection, we confirm that this subset exhibits higher rates of problems like ambiguity or semantic mismatch between question and answer choices. Experiments with LLMs reveal low accuracy and high variation in performance on the subset, suggesting our plausibility criterion may be helpful in identifying more reliable benchmark items for commonsense evaluation.
Abstract:Generative Artificial Intelligence (GenAI) systems are being increasingly deployed across all parts of industry and research settings. Developers and end users interact with these systems through the use of prompting or prompt engineering. While prompting is a widespread and highly researched concept, there exists conflicting terminology and a poor ontological understanding of what constitutes a prompt due to the area's nascency. This paper establishes a structured understanding of prompts, by assembling a taxonomy of prompting techniques and analyzing their use. We present a comprehensive vocabulary of 33 vocabulary terms, a taxonomy of 58 text-only prompting techniques, and 40 techniques for other modalities. We further present a meta-analysis of the entire literature on natural language prefix-prompting.
Abstract:A new paradigm for machine translation has recently emerged: fine-tuning large language models (LLM) on parallel text has been shown to outperform dedicated translation systems trained in a supervised fashion on much larger amounts of parallel data (Xu et al., 2024a; Alves et al., 2024). However, it remains unclear whether this paradigm can enable massively multilingual machine translation or whether it requires fine-tuning dedicated models for a small number of language pairs. How does translation fine-tuning impact the MT capabilities of LLMs for zero-shot languages, zero-shot language pairs, and translation tasks that do not involve English? To address these questions, we conduct an extensive empirical evaluation of the translation quality of the TOWER family of language models (Alves et al., 2024) on 132 translation tasks from the multi-parallel FLORES-200 data. We find that translation fine-tuning improves translation quality even for zero-shot languages on average, but that the impact is uneven depending on the language pairs involved. These results call for further research to effectively enable massively multilingual translation with LLMs.