Abstract:This paper reports on the shared tasks organized by the 21st IWSLT Conference. The shared tasks address 7 scientific challenges in spoken language translation: simultaneous and offline translation, automatic subtitling and dubbing, speech-to-speech translation, dialect and low-resource speech translation, and Indic languages. The shared tasks attracted 18 teams whose submissions are documented in 26 system papers. The growing interest towards spoken language translation is also witnessed by the constantly increasing number of shared task organizers and contributors to the overview paper, almost evenly distributed across industry and academia.
Abstract:Research in vision and language has made considerable progress thanks to benchmarks such as COCO. COCO captions focused on unambiguous facts in English; ArtEmis introduced subjective emotions and ArtELingo introduced some multilinguality (Chinese and Arabic). However we believe there should be more multilinguality. Hence, we present ArtELingo-28, a vision-language benchmark that spans $\textbf{28}$ languages and encompasses approximately $\textbf{200,000}$ annotations ($\textbf{140}$ annotations per image). Traditionally, vision research focused on unambiguous class labels, whereas ArtELingo-28 emphasizes diversity of opinions over languages and cultures. The challenge is to build machine learning systems that assign emotional captions to images. Baseline results will be presented for three novel conditions: Zero-Shot, Few-Shot and One-vs-All Zero-Shot. We find that cross-lingual transfer is more successful for culturally-related languages. Data and code are provided at www.artelingo.org.
Abstract:This paper describes the corrections made to the FLORES evaluation (dev and devtest) dataset for four African languages, namely Hausa, Northern Sotho (Sepedi), Xitsonga and isiZulu. The original dataset, though groundbreaking in its coverage of low-resource languages, exhibited various inconsistencies and inaccuracies in the reviewed languages that could potentially hinder the integrity of the evaluation of downstream tasks in natural language processing (NLP), especially machine translation. Through a meticulous review process by native speakers, several corrections were identified and implemented, improving the dataset's overall quality and reliability. For each language, we provide a concise summary of the errors encountered and corrected, and also present some statistical analysis that measure the difference between the existing and corrected datasets. We believe that our corrections enhance the linguistic accuracy and reliability of the data and, thereby, contributing to more effective evaluation of NLP tasks involving the four African languages.
Abstract:Large Language Models (LLMs) have gained widespread global adoption, showcasing advanced linguistic capabilities across multiple of languages. There is a growing interest in academia to use these models to simulate and study human behaviors. However, it is crucial to acknowledge that an LLM's proficiency in a specific language might not fully encapsulate the norms and values associated with its culture. Concerns have emerged regarding potential biases towards Anglo-centric cultures and values due to the predominance of Western and US-based training data. This study focuses on analyzing the cultural representations of emotions in LLMs, in the specific case of mixed-emotion situations. Our methodology is based on the studies of Miyamoto et al. (2010), which identified distinctive emotional indicators in Japanese and American human responses. We first administer their mixed emotion survey to five different LLMs and analyze their outputs. Second, we experiment with contextual variables to explore variations in responses considering both language and speaker origin. Thirdly, we expand our investigation to encompass additional East Asian and Western European origin languages to gauge their alignment with their respective cultures, anticipating a closer fit. We find that (1) models have limited alignment with the evidence in the literature; (2) written language has greater effect on LLMs' response than information on participants origin; and (3) LLMs responses were found more similar for East Asian languages than Western European languages.
Abstract:Low-resource languages often face challenges in acquiring high-quality language data due to the reliance on translation-based methods, which can introduce the translationese effect. This phenomenon results in translated sentences that lack fluency and naturalness in the target language. In this paper, we propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences. Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text. We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency. Human annotators and quantitative metrics were used to assess translation quality. The results indicate a preference for text translation in terms of accuracy, while our method demonstrates worse accuracy but better fluency in the language focused.
Abstract:Nollywood, based on the idea of Bollywood from India, is a series of outstanding movies that originate from Nigeria. Unfortunately, while the movies are in English, they are hard to understand for many native speakers due to the dialect of English that is spoken. In this article, we accomplish two goals: (1) create a phonetic sub-title model that is able to translate Nigerian English speech to American English and (2) use the most advanced toxicity detectors to discover how toxic the speech is. Our aim is to highlight the text in these videos which is often times ignored for lack of dialectal understanding due the fact that many people in Nigeria speak a native language like Hausa at home.
Abstract:Large Language Models (LLMs), such as ChatGPT, are widely used to generate content for various purposes and audiences. However, these models may not reflect the cultural and emotional diversity of their users, especially for low-resource languages. In this paper, we investigate how ChatGPT represents Hausa's culture and emotions. We compare responses generated by ChatGPT with those provided by native Hausa speakers on 37 culturally relevant questions. We conducted experiments using emotion analysis and applied two similarity metrics to measure the alignment between human and ChatGPT responses. We also collected human participants ratings and feedback on ChatGPT responses. Our results show that ChatGPT has some level of similarity to human responses, but also exhibits some gaps and biases in its knowledge and awareness of the Hausa culture and emotions. We discuss the implications and limitations of our methodology and analysis and suggest ways to improve the performance and evaluation of LLMs for low-resource languages.
Abstract:We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks.
Abstract:Exploring and quantifying semantic relatedness is central to representing language. It holds significant implications across various NLP tasks, including offering insights into the capabilities and performance of Large Language Models (LLMs). While earlier NLP research primarily focused on semantic similarity, often within the English language context, we instead investigate the broader phenomenon of semantic relatedness. In this paper, we present SemRel, a new semantic relatedness dataset collection annotated by native speakers across 14 languages:Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by a relatively limited availability of NLP resources. Each instance in the SemRel datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. The scores are obtained using a comparative annotation framework. We describe the data collection and annotation processes, related challenges when building the datasets, and their impact and utility in NLP. We further report experiments for each language and across the different languages.
Abstract:Numerous successes have been achieved in combating the COVID-19 pandemic, initially using various precautionary measures like lockdowns, social distancing, and the use of face masks. More recently, various vaccinations have been developed to aid in the prevention or reduction of the severity of the COVID-19 infection. Despite the effectiveness of the precautionary measures and the vaccines, there are several controversies that are massively shared on social media platforms like Twitter. In this paper, we explore the use of state-of-the-art transformer-based language models to study people's acceptance of vaccines in Nigeria. We developed a novel dataset by crawling multi-lingual tweets using relevant hashtags and keywords. Our analysis and visualizations revealed that most tweets expressed neutral sentiments about COVID-19 vaccines, with some individuals expressing positive views, and there was no strong preference for specific vaccine types, although Moderna received slightly more positive sentiment. We also found out that fine-tuning a pre-trained LLM with an appropriate dataset can yield competitive results, even if the LLM was not initially pre-trained on the specific language of that dataset.