Abstract:Language is a symbolic capital that affects people's lives in many ways (Bourdieu, 1977, 1991). It is a powerful tool that accounts for identities, cultures, traditions, and societies in general. Hence, data in a given language should be viewed as more than a collection of tokens. Good data collection and labeling practices are key to building more human-centered and socially aware technologies. While there has been a rising interest in mid- to low-resource languages within the NLP community, work in this space has to overcome unique challenges such as data scarcity and access to suitable annotators. In this paper, we collect feedback from those directly involved in and impacted by NLP artefacts for mid- to low-resource languages. We conduct a quantitative and qualitative analysis of the responses and highlight the main issues related to (1) data quality such as linguistic and cultural data suitability; and (2) the ethics of common annotation practices such as the misuse of online community services. Based on these findings, we make several recommendations for the creation of high-quality language artefacts that reflect the cultural milieu of its speakers, while simultaneously respecting the dignity and labor of data workers.
Abstract:Recent advancements in neural machine translation (NMT) have revolutionized the field, yet the dependency on extensive parallel corpora limits progress for low-resource languages. Cross-lingual transfer learning offers a promising solution by utilizing data from high-resource languages but often struggles with in-domain NMT. In this paper, we investigate three pivotal aspects: enhancing the domain-specific quality of NMT by fine-tuning domain-relevant data from different language pairs, identifying which domains are transferable in zero-shot scenarios, and assessing the impact of language-specific versus domain-specific factors on adaptation effectiveness. Using English as the source language and Spanish for fine-tuning, we evaluate multiple target languages including Portuguese, Italian, French, Czech, Polish, and Greek. Our findings reveal significant improvements in domain-specific translation quality, especially in specialized fields such as medical, legal, and IT, underscoring the importance of well-defined domain data and transparency of the experiment setup in in-domain transfer learning.
Abstract:Pretrained Language Models (PLMs) store extensive knowledge within their weights, enabling them to recall vast amount of information. However, relying on this parametric knowledge brings some limitations such as outdated information or gaps in the training data. This work addresses these problems by distinguish between two separate solutions: knowledge editing and knowledge augmentation. We introduce Difference Injection for Efficient Knowledge Augmentation and Editing (DIEK\AE), a new method that decouples knowledge processing from the PLM (LLaMA2-7B, in particular) by adopting a series of encoders. These encoders handle external knowledge and inject it into the PLM layers, significantly reducing computational costs and improving performance of the PLM. We propose a novel training technique for these encoders that does not require back-propagation through the PLM, thus greatly reducing the memory and time required to train them. Our findings demonstrate how our method is faster and more efficient compared to multiple baselines in knowledge augmentation and editing during both training and inference. We have released our code and data at https://github.com/alessioGalatolo/DIEKAE.
Abstract:We present the first shared task on Semantic Textual Relatedness (STR). While earlier shared tasks primarily focused on semantic similarity, we instead investigate the broader phenomenon of semantic relatedness across 14 languages: Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by the relatively limited availability of NLP resources. Each instance in the datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. Participating systems were asked to rank sentence pairs by their closeness in meaning (i.e., their degree of semantic relatedness) in the 14 languages in three main tracks: (a) supervised, (b) unsupervised, and (c) crosslingual. The task attracted 163 participants. We received 70 submissions in total (across all tasks) from 51 different teams, and 38 system description papers. We report on the best-performing systems as well as the most common and the most effective approaches for the three different tracks.
Abstract:Exploring and quantifying semantic relatedness is central to representing language. It holds significant implications across various NLP tasks, including offering insights into the capabilities and performance of Large Language Models (LLMs). While earlier NLP research primarily focused on semantic similarity, often within the English language context, we instead investigate the broader phenomenon of semantic relatedness. In this paper, we present SemRel, a new semantic relatedness dataset collection annotated by native speakers across 14 languages:Afrikaans, Algerian Arabic, Amharic, English, Hausa, Hindi, Indonesian, Kinyarwanda, Marathi, Moroccan Arabic, Modern Standard Arabic, Punjabi, Spanish, and Telugu. These languages originate from five distinct language families and are predominantly spoken in Africa and Asia -- regions characterised by a relatively limited availability of NLP resources. Each instance in the SemRel datasets is a sentence pair associated with a score that represents the degree of semantic textual relatedness between the two sentences. The scores are obtained using a comparative annotation framework. We describe the data collection and annotation processes, related challenges when building the datasets, and their impact and utility in NLP. We further report experiments for each language and across the different languages.
Abstract:We present the first Africentric SemEval Shared task, Sentiment Analysis for African Languages (AfriSenti-SemEval) - The dataset is available at https://github.com/afrisenti-semeval/afrisent-semeval-2023. AfriSenti-SemEval is a sentiment classification challenge in 14 African languages: Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yor\`ub\'a (Muhammad et al., 2023), using data labeled with 3 sentiment classes. We present three subtasks: (1) Task A: monolingual classification, which received 44 submissions; (2) Task B: multilingual classification, which received 32 submissions; and (3) Task C: zero-shot classification, which received 34 submissions. The best performance for tasks A and B was achieved by NLNDE team with 71.31 and 75.06 weighted F1, respectively. UCAS-IIE-NLP achieved the best average score for task C with 58.15 weighted F1. We describe the various approaches adopted by the top 10 systems and their approaches.
Abstract:Africa is home to over 2000 languages from over six language families and has the highest linguistic diversity among all continents. This includes 75 languages with at least one million speakers each. Yet, there is little NLP research conducted on African languages. Crucial in enabling such research is the availability of high-quality annotated datasets. In this paper, we introduce AfriSenti, which consists of 14 sentiment datasets of 110,000+ tweets in 14 African languages (Amharic, Algerian Arabic, Hausa, Igbo, Kinyarwanda, Moroccan Arabic, Mozambican Portuguese, Nigerian Pidgin, Oromo, Swahili, Tigrinya, Twi, Xitsonga, and Yor\`ub\'a) from four language families annotated by native speakers. The data is used in SemEval 2023 Task 12, the first Afro-centric SemEval shared task. We describe the data collection methodology, annotation process, and related challenges when curating each of the datasets. We conduct experiments with different sentiment classification baselines and discuss their usefulness. We hope AfriSenti enables new work on under-represented languages. The dataset is available at https://github.com/afrisenti-semeval/afrisent-semeval-2023 and can also be loaded as a huggingface datasets (https://huggingface.co/datasets/shmuhammad/AfriSenti).