Recent advancements in neural machine translation (NMT) have revolutionized the field, yet the dependency on extensive parallel corpora limits progress for low-resource languages. Cross-lingual transfer learning offers a promising solution by utilizing data from high-resource languages but often struggles with in-domain NMT. In this paper, we investigate three pivotal aspects: enhancing the domain-specific quality of NMT by fine-tuning domain-relevant data from different language pairs, identifying which domains are transferable in zero-shot scenarios, and assessing the impact of language-specific versus domain-specific factors on adaptation effectiveness. Using English as the source language and Spanish for fine-tuning, we evaluate multiple target languages including Portuguese, Italian, French, Czech, Polish, and Greek. Our findings reveal significant improvements in domain-specific translation quality, especially in specialized fields such as medical, legal, and IT, underscoring the importance of well-defined domain data and transparency of the experiment setup in in-domain transfer learning.