AT&T Bell Labs
Abstract:Most conference papers present new results, but this paper will focus more on opportunities for the audience to make their own contributions. This paper is intended to challenge the community to think more broadly about what we can do with comparable corpora. We will start with a review of the history, and then suggest new directions for future research. This was a keynote at BUCC-2025, a workshop associated with Coling-2025.
Abstract:How effective is peer-reviewing in identifying important papers? We treat this question as a forecasting task. Can we predict which papers will be highly cited in the future based on venue and "early returns" (citations soon after publication)? We show early returns are more predictive than venue. Finally, we end with constructive suggestions to address scaling challenges: (a) too many submissions and (b) too few qualified reviewers.
Abstract:We argue that Content-based filtering (CBF) and Graph-based methods (GB) complement one another in Academic Search recommendations. The scientific literature can be viewed as a conversation between authors and the audience. CBF uses abstracts to infer authors' positions, and GB uses citations to infer responses from the audience. In this paper, we describe nine differences between CBF and GB, as well as synergistic opportunities for hybrid combinations. Two embeddings will be used to illustrate these opportunities: (1) Specter, a CBF method based on BERT-like deepnet encodings of abstracts, and (2) ProNE, a GB method based on spectral clustering of more than 200M papers and 2B citations from Semantic Scholar.
Abstract:Large Language Models (LLMs), such as ChatGPT, are widely used to generate content for various purposes and audiences. However, these models may not reflect the cultural and emotional diversity of their users, especially for low-resource languages. In this paper, we investigate how ChatGPT represents Hausa's culture and emotions. We compare responses generated by ChatGPT with those provided by native Hausa speakers on 37 culturally relevant questions. We conducted experiments using emotion analysis and applied two similarity metrics to measure the alignment between human and ChatGPT responses. We also collected human participants ratings and feedback on ChatGPT responses. Our results show that ChatGPT has some level of similarity to human responses, but also exhibits some gaps and biases in its knowledge and awareness of the Hausa culture and emotions. We discuss the implications and limitations of our methodology and analysis and suggest ways to improve the performance and evaluation of LLMs for low-resource languages.
Abstract:English has long been assumed the $\textit{lingua franca}$ of scientific research, and this notion is reflected in the natural language processing (NLP) research involving scientific document representation. In this position piece, we quantitatively show that the literature is largely multilingual and argue that current models and benchmarks should reflect this linguistic diversity. We provide evidence that text-based models fail to create meaningful representations for non-English papers and highlight the negative user-facing impacts of using English-only models non-discriminately across a multilingual domain. We end with suggestions for the NLP community on how to improve performance on non-English documents.
Abstract:In simultaneous translation (SimulMT), the most widely used strategy is the wait-k policy thanks to its simplicity and effectiveness in balancing translation quality and latency. However, wait-k suffers from two major limitations: (a) it is a fixed policy that can not adaptively adjust latency given context, and (b) its training is much slower than full-sentence translation. To alleviate these issues, we propose a novel and efficient training scheme for adaptive SimulMT by augmenting the training corpus with adaptive prefix-to-prefix pairs, while the training complexity remains the same as that of training full-sentence translation models. Experiments on two language pairs show that our method outperforms all strong baselines in terms of translation quality and latency.
Abstract:This paper proposes an efficient approach to learning disentangled representations with causal mechanisms based on the difference of conditional probabilities in original and new distributions. We approximate the difference with models' generalization abilities so that it fits in the standard machine learning framework and can be efficiently computed. In contrast to the state-of-the-art approach, which relies on the learner's adaptation speed to new distribution, the proposed approach only requires evaluating the model's generalization ability. We provide a theoretical explanation for the advantage of the proposed method, and our experiments show that the proposed technique is 1.9--11.0$\times$ more sample efficient and 9.4--32.4 times quicker than the previous method on various tasks. The source code is available at \url{https://github.com/yuanpeng16/EDCR}.
Abstract:There are so many models in the literature that it is difficult for practitioners to decide which combinations are likely to be effective for a new task. This paper attempts to address this question by capturing relationships among checkpoints published on the web. We model the space of tasks as a Gaussian process. The covariance can be estimated from checkpoints and unlabeled probing data. With the Gaussian process, we can identify representative checkpoints by a maximum mutual information criterion. This objective is submodular. A greedy method identifies representatives that are likely to "cover" the task space. These representatives generalize to new tasks with superior performance. Empirical evidence is provided for applications from both computational linguistics as well as computer vision.
Abstract:This study reports our efforts to improve automatic recognition of suprasegmentals by fine-tuning wav2vec 2.0 with CTC, a method that has been successful in automatic speech recognition. We demonstrate that the method can improve the state-of-the-art on automatic recognition of syllables, tones, and pitch accents. Utilizing segmental information, by employing tonal finals or tonal syllables as recognition units, can significantly improve Mandarin tone recognition. Language models are helpful when tonal syllables are used as recognition units, but not helpful when tones are recognition units. Finally, Mandarin tone recognition can benefit from English phoneme recognition by combining the two tasks in fine-tuning wav2vec 2.0.
Abstract:We propose a method for emotion recognition through emotiondependent speech recognition using Wav2vec 2.0. Our method achieved a significant improvement over most previously reported results on IEMOCAP, a benchmark emotion dataset. Different types of phonetic units are employed and compared in terms of accuracy and robustness of emotion recognition within and across datasets and languages. Models of phonemes, broad phonetic classes, and syllables all significantly outperform the utterance model, demonstrating that phonetic units are helpful and should be incorporated in speech emotion recognition. The best performance is from using broad phonetic classes. Further research is needed to investigate the optimal set of broad phonetic classes for the task of emotion recognition. Finally, we found that Wav2vec 2.0 can be fine-tuned to recognize coarser-grained or larger phonetic units than phonemes, such as broad phonetic classes and syllables.