School of Computer Science, Shenyang Aerospace University
Abstract:We present DeepSeek-VL2, an advanced series of large Mixture-of-Experts (MoE) Vision-Language Models that significantly improves upon its predecessor, DeepSeek-VL, through two key major upgrades. For the vision component, we incorporate a dynamic tiling vision encoding strategy designed for processing high-resolution images with different aspect ratios. For the language component, we leverage DeepSeekMoE models with the Multi-head Latent Attention mechanism, which compresses Key-Value cache into latent vectors, to enable efficient inference and high throughput. Trained on an improved vision-language dataset, DeepSeek-VL2 demonstrates superior capabilities across various tasks, including but not limited to visual question answering, optical character recognition, document/table/chart understanding, and visual grounding. Our model series is composed of three variants: DeepSeek-VL2-Tiny, DeepSeek-VL2-Small and DeepSeek-VL2, with 1.0B, 2.8B and 4.5B activated parameters respectively. DeepSeek-VL2 achieves competitive or state-of-the-art performance with similar or fewer activated parameters compared to existing open-source dense and MoE-based models. Codes and pre-trained models are publicly accessible at https://github.com/deepseek-ai/DeepSeek-VL2.
Abstract:Recent advances in Gaussian Splatting have significantly advanced the field, achieving both panoptic and interactive segmentation of 3D scenes. However, existing methodologies often overlook the critical need for reconstructing specified targets with complex structures from sparse views. To address this issue, we introduce TSGaussian, a novel framework that combines semantic constraints with depth priors to avoid geometry degradation in challenging novel view synthesis tasks. Our approach prioritizes computational resources on designated targets while minimizing background allocation. Bounding boxes from YOLOv9 serve as prompts for Segment Anything Model to generate 2D mask predictions, ensuring semantic accuracy and cost efficiency. TSGaussian effectively clusters 3D gaussians by introducing a compact identity encoding for each Gaussian ellipsoid and incorporating 3D spatial consistency regularization. Leveraging these modules, we propose a pruning strategy to effectively reduce redundancy in 3D gaussians. Extensive experiments demonstrate that TSGaussian outperforms state-of-the-art methods on three standard datasets and a new challenging dataset we collected, achieving superior results in novel view synthesis of specific objects. Code is available at: https://github.com/leon2000-ai/TSGaussian.
Abstract:In recent years, large language models (LLMs) have been widely adopted in political science tasks such as election prediction, sentiment analysis, policy impact assessment, and misinformation detection. Meanwhile, the need to systematically understand how LLMs can further revolutionize the field also becomes urgent. In this work, we--a multidisciplinary team of researchers spanning computer science and political science--present the first principled framework termed Political-LLM to advance the comprehensive understanding of integrating LLMs into computational political science. Specifically, we first introduce a fundamental taxonomy classifying the existing explorations into two perspectives: political science and computational methodologies. In particular, from the political science perspective, we highlight the role of LLMs in automating predictive and generative tasks, simulating behavior dynamics, and improving causal inference through tools like counterfactual generation; from a computational perspective, we introduce advancements in data preparation, fine-tuning, and evaluation methods for LLMs that are tailored to political contexts. We identify key challenges and future directions, emphasizing the development of domain-specific datasets, addressing issues of bias and fairness, incorporating human expertise, and redefining evaluation criteria to align with the unique requirements of computational political science. Political-LLM seeks to serve as a guidebook for researchers to foster an informed, ethical, and impactful use of Artificial Intelligence in political science. Our online resource is available at: http://political-llm.org/.
Abstract:Explaining the decision-making processes of Artificial Intelligence (AI) models is crucial for addressing their "black box" nature, particularly in tasks like image classification. Traditional eXplainable AI (XAI) methods typically rely on unimodal explanations, either visual or textual, each with inherent limitations. Visual explanations highlight key regions but often lack rationale, while textual explanations provide context without spatial grounding. Further, both explanation types can be inconsistent or incomplete, limiting their reliability. To address these challenges, we propose a novel Multimodal Explanation-Guided Learning (MEGL) framework that leverages both visual and textual explanations to enhance model interpretability and improve classification performance. Our Saliency-Driven Textual Grounding (SDTG) approach integrates spatial information from visual explanations into textual rationales, providing spatially grounded and contextually rich explanations. Additionally, we introduce Textual Supervision on Visual Explanations to align visual explanations with textual rationales, even in cases where ground truth visual annotations are missing. A Visual Explanation Distribution Consistency loss further reinforces visual coherence by aligning the generated visual explanations with dataset-level patterns, enabling the model to effectively learn from incomplete multimodal supervision. We validate MEGL on two new datasets, Object-ME and Action-ME, for image classification with multimodal explanations. Experimental results demonstrate that MEGL outperforms previous approaches in prediction accuracy and explanation quality across both visual and textual domains. Our code will be made available upon the acceptance of the paper.
Abstract:As an essential visual attribute, image complexity affects human image comprehension and directly influences the performance of computer vision tasks. However, accurately assessing and quantifying image complexity faces significant challenges. Previous works needed more generalization capabilities and well-labeled datasets to learn image complexity features. However, creating such datasets requires expensive manual labeling costs, and the models inevitably learn about human subjective biases. To address the above problems, we propose CLIC, an unsupervised framework based on contrastive learning, for learning image complexity representations. The method learns image complexity features on unlabeled data, avoiding the high labeling cost. Specifically, we propose a unique positive and negative sample selection strategy to reinforce the differences in complexity features. At the same time, we introduce an image prior-based Complexity-Aware Loss to constrain the learning process of the model. We conducted extensive experiments for verification, and the results show that CLIC can effectively learn the image complexity representation. CLIC obtained competitive results with supervised methods by fine-tuning on IC9600. In addition, CLIC applied to downstream tasks shows significant performance improvements, demonstrating the potential for application in various real-world scenarios. \href{https://github.com/xauat-liushipeng/CLIC}{code}
Abstract:We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.
Abstract:With the rapid advancement of autonomous driving technology, efficient and accurate object detection capabilities have become crucial factors in ensuring the safety and reliability of autonomous driving systems. However, in low-visibility environments such as hazy conditions, the performance of traditional object detection algorithms often degrades significantly, failing to meet the demands of autonomous driving. To address this challenge, this paper proposes two innovative deep learning models: YOLO-Vehicle and YOLO-Vehicle-Pro. YOLO-Vehicle is an object detection model tailored specifically for autonomous driving scenarios, employing multimodal fusion techniques to combine image and textual information for object detection. YOLO-Vehicle-Pro builds upon this foundation by introducing an improved image dehazing algorithm, enhancing detection performance in low-visibility environments. In addition to model innovation, this paper also designs and implements a cloud-edge collaborative object detection system, deploying models on edge devices and offloading partial computational tasks to the cloud in complex situations. Experimental results demonstrate that on the KITTI dataset, the YOLO-Vehicle-v1s model achieved 92.1% accuracy while maintaining a detection speed of 226 FPS and an inference time of 12ms, meeting the real-time requirements of autonomous driving. When processing hazy images, the YOLO-Vehicle-Pro model achieved a high accuracy of 82.3% mAP@50 on the Foggy Cityscapes dataset while maintaining a detection speed of 43 FPS.
Abstract:Representation learning of Text-Attributed Graphs (TAGs) has garnered significant attention due to its applications in various domains, including recommendation systems and social networks. Despite advancements in TAG learning methodologies, challenges remain in explainability due to the black-box nature of existing TAG representation learning models. This paper presents TAGExplainer, the first method designed to generate natural language explanations for TAG learning. TAGExplainer employs a generative language model that maps input-output pairs to explanations reflecting the model's decision-making process. To address the lack of annotated ground truth explanations in real-world scenarios, we propose first generating pseudo-labels that capture the model's decisions from saliency-based explanations, then the pseudo-label generator is iteratively trained based on three training objectives focusing on faithfulness and brevity via Expert Iteration, to improve the quality of generated pseudo-labels. The high-quality pseudo-labels are finally utilized to train an end-to-end explanation generator model. Extensive experiments are conducted to demonstrate the effectiveness of TAGExplainer in producing faithful and concise natural language explanations.
Abstract:Large Language Models (LLMs) achieve state-of-the-art performance but are challenging to deploy due to their high computational and storage demands. Pruning can reduce model size, yet existing methods assume public access to calibration data, which is impractical for privacy-sensitive applications. To address the challenge of pruning LLMs in privacy-preserving settings, we propose FedSpaLLM, the first federated learning framework designed specifically for pruning LLMs. FedSpaLLM enables clients to prune their models locally based on private data while accounting for system heterogeneity and maintaining communication efficiency. Our framework introduces several key innovations: (1) a novel $\ell_0$-norm aggregation function that ensures only non-zero weights are averaged across clients, preserving important model parameters; (2) an adaptive mask expansion technique that meets global sparsity targets while accommodating client-specific pruning decisions; and (3) a layer sampling strategy that reduces communication overhead and personalizes the pruning process based on client resources. Extensive experiments show that FedSpaLLM improves pruning performance in diverse federated settings. The source code will be released upon publication.
Abstract:Teaching large language models (LLMs) to generate text with citations to evidence sources can mitigate hallucinations and enhance verifiability in information-seeking systems. However, improving this capability requires high-quality attribution data, which is costly and labor-intensive. Inspired by recent advances in self-improvement that enhance LLMs without manual annotation, we present START, a Self-Taught AttRibuTion framework for iteratively improving the attribution capability of LLMs. First, to prevent models from stagnating due to initially insufficient supervision signals, START leverages the model to self-construct synthetic training data for warming up. To further self-improve the model's attribution ability, START iteratively utilizes fine-grained preference supervision signals constructed from its sampled responses to encourage robust, comprehensive, and attributable generation. Experiments on three open-domain question-answering datasets, covering long-form QA and multi-step reasoning, demonstrate significant performance gains of 25.13% on average without relying on human annotations and more advanced models. Further analysis reveals that START excels in aggregating information across multiple sources.