School of Computer Science, Shenyang Aerospace University
Abstract:Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Abstract:In the pursuit of superior video-processing MLLMs, we have encountered a perplexing paradox: the "anti-scaling law", where more data and larger models lead to worse performance. This study unmasks the culprit: "temporal hacking", a phenomenon where models shortcut by fixating on select frames, missing the full video narrative. In this work, we systematically establish a comprehensive theory of temporal hacking, defining it from a reinforcement learning perspective, introducing the Temporal Perplexity (TPL) score to assess this misalignment, and proposing the Unhackable Temporal Rewarding (UTR) framework to mitigate the temporal hacking. Both theoretically and empirically, TPL proves to be a reliable indicator of temporal modeling quality, correlating strongly with frame activation patterns. Extensive experiments reveal that UTR not only counters temporal hacking but significantly elevates video comprehension capabilities. This work not only advances video-AI systems but also illuminates the critical importance of aligning proxy rewards with true objectives in MLLM development.
Abstract:Joint optimization of poses and features has been extensively studied and demonstrated to yield more accurate results in feature-based SLAM problems. However, research on jointly optimizing poses and non-feature-based maps remains limited. Occupancy maps are widely used non-feature-based environment representations because they effectively classify spaces into obstacles, free areas, and unknown regions, providing robots with spatial information for various tasks. In this paper, we propose Occupancy-SLAM, a novel optimization-based SLAM method that enables the joint optimization of robot trajectory and the occupancy map through a parameterized map representation. The key novelty lies in optimizing both robot poses and occupancy values at different cell vertices simultaneously, a significant departure from existing methods where the robot poses need to be optimized first before the map can be estimated. Evaluations using simulations and practical 2D laser datasets demonstrate that the proposed approach can robustly obtain more accurate robot trajectories and occupancy maps than state-of-the-art techniques with comparable computational time. Preliminary results in the 3D case further confirm the potential of the proposed method in practical 3D applications, achieving more accurate results than existing methods.
Abstract:Student performance prediction is one of the most important subjects in educational data mining. As a modern technology, machine learning offers powerful capabilities in feature extraction and data modeling, providing essential support for diverse application scenarios, as evidenced by recent studies confirming its effectiveness in educational data mining. However, despite extensive prediction experiments, machine learning methods have not been effectively integrated into practical teaching strategies, hindering their application in modern education. In addition, massive features as input variables for machine learning algorithms often leads to information redundancy, which can negatively impact prediction accuracy. Therefore, how to effectively use machine learning methods to predict student performance and integrate the prediction results with actual teaching scenarios is a worthy research subject. To this end, this study integrates the results of machine learning-based student performance prediction with tiered instruction, aiming to enhance student outcomes in target course, which is significant for the application of educational data mining in contemporary teaching scenarios. Specifically, we collect original educational data and perform feature selection to reduce information redundancy. Then, the performance of five representative machine learning methods is analyzed and discussed with Random Forest showing the best performance. Furthermore, based on the results of the classification of students, tiered instruction is applied accordingly, and different teaching objectives and contents are set for all levels of students. The comparison of teaching outcomes between the control and experimental classes, along with the analysis of questionnaire results, demonstrates the effectiveness of the proposed framework.
Abstract:This paper presents Perceptual Preference Optimization (PerPO), a perception alignment method aimed at addressing the visual discrimination challenges in generative pre-trained multimodal large language models (MLLMs). To align MLLMs with human visual perception process, PerPO employs discriminative rewarding to gather diverse negative samples, followed by listwise preference optimization to rank them.By utilizing the reward as a quantitative margin for ranking, our method effectively bridges generative preference optimization and discriminative empirical risk minimization. PerPO significantly enhances MLLMs' visual discrimination capabilities while maintaining their generative strengths, mitigates image-unconditional reward hacking, and ensures consistent performance across visual tasks. This work marks a crucial step towards more perceptually aligned and versatile MLLMs. We also hope that PerPO will encourage the community to rethink MLLM alignment strategies.
Abstract:Ubiquitous geometric objects can be precisely and efficiently represented as polyhedra. The transformation of a polyhedron into a vector, known as polyhedra representation learning, is crucial for manipulating these shapes with mathematical and statistical tools for tasks like classification, clustering, and generation. Recent years have witnessed significant strides in this domain, yet most efforts focus on the vertex sequence of a polyhedron, neglecting the complex surface modeling crucial in real-world polyhedral objects. This study proposes \textbf{PolyhedronNet}, a general framework tailored for learning representations of 3D polyhedral objects. We propose the concept of the surface-attributed graph to seamlessly model the vertices, edges, faces, and their geometric interrelationships within a polyhedron. To effectively learn the representation of the entire surface-attributed graph, we first propose to break it down into local rigid representations to effectively learn each local region's relative positions against the remaining regions without geometric information loss. Subsequently, we propose PolyhedronGNN to hierarchically aggregate the local rigid representation via intra-face and inter-face geometric message passing modules, to obtain a global representation that minimizes information loss while maintaining rotation and translation invariance. Our experimental evaluations on four distinct datasets, encompassing both classification and retrieval tasks, substantiate PolyhedronNet's efficacy in capturing comprehensive and informative representations of 3D polyhedral objects. Code and data are available at {https://github.com/dyu62/3D_polyhedron}.
Abstract:Research question answering requires accurate retrieval and contextual understanding of scientific literature. However, current Retrieval-Augmented Generation (RAG) methods often struggle to balance complex document relationships with precise information retrieval. In this paper, we introduce Contextualized Graph Retrieval-Augmented Generation (CG-RAG), a novel framework that integrates sparse and dense retrieval signals within graph structures to enhance retrieval efficiency and subsequently improve generation quality for research question answering. First, we propose a contextual graph representation for citation graphs, effectively capturing both explicit and implicit connections within and across documents. Next, we introduce Lexical-Semantic Graph Retrieval (LeSeGR), which seamlessly integrates sparse and dense retrieval signals with graph encoding. It bridges the gap between lexical precision and semantic understanding in citation graph retrieval, demonstrating generalizability to existing graph retrieval and hybrid retrieval methods. Finally, we present a context-aware generation strategy that utilizes the retrieved graph-structured information to generate precise and contextually enriched responses using large language models (LLMs). Extensive experiments on research question answering benchmarks across multiple domains demonstrate that our CG-RAG framework significantly outperforms RAG methods combined with various state-of-the-art retrieval approaches, delivering superior retrieval accuracy and generation quality.
Abstract:Spiking Neural Networks (SNNs), which offer exceptional energy efficiency for inference, and Federated Learning (FL), which offers privacy-preserving distributed training, is a rising area of interest that highly beneficial towards Internet of Things (IoT) devices. Despite this, research that tackles Byzantine attacks and bandwidth limitation in FL-SNNs, both poses significant threats on model convergence and training times, still remains largely unexplored. Going beyond proposing a solution for both of these problems, in this work we highlight the dual benefits of FL-SNNs, against non-omniscient Byzantine adversaries (ones that restrict attackers access to local clients datasets), and greater communication efficiency, over FL-ANNs. Specifically, we discovered that a simple integration of Top-\k{appa} sparsification into the FL apparatus can help leverage the advantages of the SNN models in both greatly reducing bandwidth usage and significantly boosting the robustness of FL training against non-omniscient Byzantine adversaries. Most notably, we saw a massive improvement of roughly 40% accuracy gain in FL-SNNs training under the lethal MinMax attack
Abstract:Recently, "visual o1" began to enter people's vision, with expectations that this slow-thinking design can solve visual reasoning tasks, especially geometric math problems. However, the reality is that current LVLMs (Large Vision Language Models) can hardly even accurately copy a geometric figure, let alone truly understand the complex inherent logic and spatial relationships within geometric shapes. We believe accurate copying (strong perception) is the first step to visual o1. Accordingly, we introduce the concept of "slow perception" (SP), which guides the model to gradually perceive basic point-line combinations, as our humans, reconstruct complex geometric structures progressively. There are two-fold stages in SP: a) perception decomposition. Perception is not instantaneous. In this stage, complex geometric figures are broken down into basic simple units to unify geometry representation. b) perception flow, which acknowledges that accurately tracing a line is not an easy task. This stage aims to avoid "long visual jumps" in regressing line segments by using a proposed "perceptual ruler" to trace each line stroke-by-stroke. Surprisingly, such a human-like perception manner enjoys an inference time scaling law -- the slower, the better. Researchers strive to speed up the model's perception in the past, but we slow it down again, allowing the model to read the image step-by-step and carefully.
Abstract:We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.