Abstract:Multimodal conversation, a crucial form of human communication, carries rich emotional content, making the exploration of the causes of emotions within it a research endeavor of significant importance. However, existing research on the causes of emotions typically uses clause selection methods to locate the reason utterance, without providing a detailed explanation of the emotional causes. In this paper, we propose a new task, \textbf{M}ultimodal \textbf{C}onversation \textbf{E}motion \textbf{C}ause \textbf{E}xplanation (MCECE), aiming to generate a detailed explanation of the emotional cause to the target utterance within a multimodal conversation scenario. Building upon the MELD dataset, we develop a new dataset (ECEM) that integrates video clips with detailed explanations of character emotions, facilitating an in-depth examination of the causal factors behind emotional expressions in multimodal conversations.A novel approach, FAME-Net, is further proposed, that harnesses the power of Large Language Models (LLMs) to analyze visual data and accurately interpret the emotions conveyed through facial expressions in videos. By exploiting the contagion effect of facial emotions, FAME-Net effectively captures the emotional causes of individuals engaged in conversations. Our experimental results on the newly constructed dataset show that FAME-Net significantly outperforms several excellent large language model baselines. Code and dataset are available at \url{https://github.com/3222345200/ECEMdataset.git}
Abstract:Fine-tuning Large Language Models (LLMs) has become a crucial technique for adapting pre-trained models to downstream tasks. However, the enormous size of LLMs poses significant challenges in terms of computational complexity and resource requirements. Low-Rank Adaptation (LoRA) has emerged as a promising solution. However, there exists a gap between the practical performance of low-rank adaptations and its theoretical optimum. In this work, we propose eXtreme Gradient Boosting LoRA (XGBLoRA), a novel framework that bridges this gap by leveraging the power of ensemble learning. Inspired by gradient boosting, XGBLoRA iteratively learns and merges a sequence of LoRA adaptations to refine model predictions. It achieves better performance than the standard LoRA, while enjoying the computational efficiency of rank-1 adaptations. We provide theoretical analysis to show the convergence and optimality of our approach, and conduct extensive experiments on a range of natural language processing tasks. The results demonstrate that XGBLoRA consistently outperforms standard LoRA and achieves performance comparable to full fine-tuning with significantly fewer trainable parameters. This work advances parameter-efficient fine-tuning for LLMs, and offers a promising solution for adapting LLMs to downstream tasks while optimizing performance and efficiency.
Abstract:This paper introduces the UCFE: User-Centric Financial Expertise benchmark, an innovative framework designed to evaluate the ability of large language models (LLMs) to handle complex real-world financial tasks. UCFE benchmark adopts a hybrid approach that combines human expert evaluations with dynamic, task-specific interactions to simulate the complexities of evolving financial scenarios. Firstly, we conducted a user study involving 804 participants, collecting their feedback on financial tasks. Secondly, based on this feedback, we created our dataset that encompasses a wide range of user intents and interactions. This dataset serves as the foundation for benchmarking 12 LLM services using the LLM-as-Judge methodology. Our results show a significant alignment between benchmark scores and human preferences, with a Pearson correlation coefficient of 0.78, confirming the effectiveness of the UCFE dataset and our evaluation approach. UCFE benchmark not only reveals the potential of LLMs in the financial sector but also provides a robust framework for assessing their performance and user satisfaction. The benchmark dataset and evaluation code are available.
Abstract:Representation learning of Text-Attributed Graphs (TAGs) has garnered significant attention due to its applications in various domains, including recommendation systems and social networks. Despite advancements in TAG learning methodologies, challenges remain in explainability due to the black-box nature of existing TAG representation learning models. This paper presents TAGExplainer, the first method designed to generate natural language explanations for TAG learning. TAGExplainer employs a generative language model that maps input-output pairs to explanations reflecting the model's decision-making process. To address the lack of annotated ground truth explanations in real-world scenarios, we propose first generating pseudo-labels that capture the model's decisions from saliency-based explanations, then the pseudo-label generator is iteratively trained based on three training objectives focusing on faithfulness and brevity via Expert Iteration, to improve the quality of generated pseudo-labels. The high-quality pseudo-labels are finally utilized to train an end-to-end explanation generator model. Extensive experiments are conducted to demonstrate the effectiveness of TAGExplainer in producing faithful and concise natural language explanations.
Abstract:As the capabilities of Multimodal Large Language Models (MLLMs) continue to improve, the need for higher-order capability evaluation of MLLMs is increasing. However, there is a lack of work evaluating MLLM for higher-order perception and understanding of Chinese visual content. To fill the gap, we introduce the **C**hinese **I**mage **I**mplication understanding **Bench**mark, **CII-Bench**, which aims to assess the higher-order perception and understanding capabilities of MLLMs for Chinese images. CII-Bench stands out in several ways compared to existing benchmarks. Firstly, to ensure the authenticity of the Chinese context, images in CII-Bench are sourced from the Chinese Internet and manually reviewed, with corresponding answers also manually crafted. Additionally, CII-Bench incorporates images that represent Chinese traditional culture, such as famous Chinese traditional paintings, which can deeply reflect the model's understanding of Chinese traditional culture. Through extensive experiments on CII-Bench across multiple MLLMs, we have made significant findings. Initially, a substantial gap is observed between the performance of MLLMs and humans on CII-Bench. The highest accuracy of MLLMs attains 64.4%, where as human accuracy averages 78.2%, peaking at an impressive 81.0%. Subsequently, MLLMs perform worse on Chinese traditional culture images, suggesting limitations in their ability to understand high-level semantics and lack a deep knowledge base of Chinese traditional culture. Finally, it is observed that most models exhibit enhanced accuracy when image emotion hints are incorporated into the prompts. We believe that CII-Bench will enable MLLMs to gain a better understanding of Chinese semantics and Chinese-specific images, advancing the journey towards expert artificial general intelligence (AGI). Our project is publicly available at https://cii-bench.github.io/.
Abstract:3D particle tracking velocimetry (PTV) is a key technique for analyzing turbulent flow, one of the most challenging computational problems of our century. At the core of 3D PTV is the dual-frame fluid motion estimation algorithm, which tracks particles across two consecutive frames. Recently, deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation; however, they heavily depend on large volumes of labeled data. In this paper, we introduce a new method that is completely self-supervised and notably outperforms its fully-supervised counterparts while requiring only 1% of the training samples (without labels) used by previous methods. Our method features a novel zero-divergence loss that is specific to the domain of turbulent flow. Inspired by the success of splat operation in high-dimensional filtering and random fields, we propose a splat-based implementation for this loss which is both efficient and effective. The self-supervised nature of our method naturally supports test-time optimization, leading to the development of a tailored Dynamic Velocimetry Enhancer (DVE) module. We demonstrate that strong cross-domain robustness is achieved through test-time optimization on unseen leave-one-out synthetic domains and real physical/biological domains. Code, data and models are available at https://github.com/Forrest-110/FluidMotionNet.
Abstract:Continual learning (CL) aims to empower machine learning models to learn continually from new data, while building upon previously acquired knowledge without forgetting. As machine learning models have evolved from small to large pre-trained architectures, and from supporting unimodal to multimodal data, multimodal continual learning (MMCL) methods have recently emerged. The primary challenge of MMCL is that it goes beyond a simple stacking of unimodal CL methods, as such straightforward approaches often yield unsatisfactory performance. In this work, we present the first comprehensive survey on MMCL. We provide essential background knowledge and MMCL settings, as well as a structured taxonomy of MMCL methods. We categorize existing MMCL methods into four categories, i.e., regularization-based, architecture-based, replay-based, and prompt-based methods, explaining their methodologies and highlighting their key innovations. Additionally, to prompt further research in this field, we summarize open MMCL datasets and benchmarks, and discuss several promising future directions for investigation and development. We have also created a GitHub repository for indexing relevant MMCL papers and open resources available at https://github.com/LucyDYu/Awesome-Multimodal-Continual-Learning.
Abstract:Understanding long text is of great demands in practice but beyond the reach of most language-image pre-training (LIP) models. In this work, we empirically confirm that the key reason causing such an issue is that the training images are usually paired with short captions, leaving certain tokens easily overshadowed by salient tokens. Towards this problem, our initial attempt is to relabel the data with long captions, however, directly learning with which may lead to performance degradation in understanding short text (e.g., in the image classification task). Then, after incorporating corner tokens to aggregate diverse textual information, we manage to help the model catch up to its original level of short text understanding yet greatly enhance its capability of long text understanding. We further look into whether the model can continuously benefit from longer captions and notice a clear trade-off between the performance and the efficiency. Finally, we validate the effectiveness of our approach using a self-constructed large-scale dataset, which consists of 100M long caption oriented text-image pairs. It is noteworthy that, on the task of long-text image retrieval, we beat the competitor using long captions with 11.1% improvement (i.e., from 72.62% to 83.72%). We will release the code, the model, and the new dataset to facilitate the reproducibility and further research. The project page is available at https://wuw2019.github.io/lotlip.
Abstract:Text watermarking for Large Language Models (LLMs) has made significant progress in detecting LLM outputs and preventing misuse. Current watermarking techniques offer high detectability, minimal impact on text quality, and robustness to text editing. However, current researches lack investigation into the imperceptibility of watermarking techniques in LLM services. This is crucial as LLM providers may not want to disclose the presence of watermarks in real-world scenarios, as it could reduce user willingness to use the service and make watermarks more vulnerable to attacks. This work is the first to investigate the imperceptibility of watermarked LLMs. We design an identification algorithm called Water-Probe that detects watermarks through well-designed prompts to the LLM. Our key motivation is that current watermarked LLMs expose consistent biases under the same watermark key, resulting in similar differences across prompts under different watermark keys. Experiments show that almost all mainstream watermarking algorithms are easily identified with our well-designed prompts, while Water-Probe demonstrates a minimal false positive rate for non-watermarked LLMs. Finally, we propose that the key to enhancing the imperceptibility of watermarked LLMs is to increase the randomness of watermark key selection. Based on this, we introduce the Water-Bag strategy, which significantly improves watermark imperceptibility by merging multiple watermark keys.
Abstract:Detecting objects of interest through language often presents challenges, particularly with objects that are uncommon or complex to describe, due to perceptual discrepancies between automated models and human annotators. These challenges highlight the need for comprehensive datasets that go beyond standard object labels by incorporating detailed attribute descriptions. To address this need, we introduce the Objects365-Attr dataset, an extension of the existing Objects365 dataset, distinguished by its attribute annotations. This dataset reduces inconsistencies in object detection by integrating a broad spectrum of attributes, including color, material, state, texture and tone. It contains an extensive collection of 5.6M object-level attribute descriptions, meticulously annotated across 1.4M bounding boxes. Additionally, to validate the dataset's effectiveness, we conduct a rigorous evaluation of YOLO-World at different scales, measuring their detection performance and demonstrating the dataset's contribution to advancing object detection.