Abstract:Dataset Distillation (DD) is an emerging technique that compresses large-scale datasets into significantly smaller synthesized datasets while preserving high test performance and enabling the efficient training of large models. However, current research primarily focuses on enhancing evaluation accuracy under limited compression ratios, often overlooking critical security concerns such as adversarial robustness. A key challenge in evaluating this robustness lies in the complex interactions between distillation methods, model architectures, and adversarial attack strategies, which complicate standardized assessments. To address this, we introduce BEARD, an open and unified benchmark designed to systematically assess the adversarial robustness of DD methods, including DM, IDM, and BACON. BEARD encompasses a variety of adversarial attacks (e.g., FGSM, PGD, C&W) on distilled datasets like CIFAR-10/100 and TinyImageNet. Utilizing an adversarial game framework, it introduces three key metrics: Robustness Ratio (RR), Attack Efficiency Ratio (AE), and Comprehensive Robustness-Efficiency Index (CREI). Our analysis includes unified benchmarks, various Images Per Class (IPC) settings, and the effects of adversarial training. Results are available on the BEARD Leaderboard, along with a library providing model and dataset pools to support reproducible research. Access the code at BEARD.
Abstract:Tabular anomaly detection under the one-class classification setting poses a significant challenge, as it involves accurately conceptualizing "normal" derived exclusively from a single category to discern anomalies from normal data variations. Capturing the intrinsic correlation among attributes within normal samples presents one promising method for learning the concept. To do so, the most recent effort relies on a learnable mask strategy with a reconstruction task. However, this wisdom may suffer from the risk of producing uniform masks, i.e., essentially nothing is masked, leading to less effective correlation learning. To address this issue, we presume that attributes related to others in normal samples can be divided into two non-overlapping and correlated subsets, defined as CorrSets, to capture the intrinsic correlation effectively. Accordingly, we introduce an innovative method that disentangles CorrSets from normal tabular data. To our knowledge, this is a pioneering effort to apply the concept of disentanglement for one-class anomaly detection on tabular data. Extensive experiments on 20 tabular datasets show that our method substantially outperforms the state-of-the-art methods and leads to an average performance improvement of 6.1% on AUC-PR and 2.1% on AUC-ROC.
Abstract:The integration of Large Language Models (LLMs) into autonomous driving systems demonstrates strong common sense and reasoning abilities, effectively addressing the pitfalls of purely data-driven methods. Current LLM-based agents require lengthy inference times and face challenges in interacting with real-time autonomous driving environments. A key open question is whether we can effectively leverage the knowledge from LLMs to train an efficient and robust Reinforcement Learning (RL) agent. This paper introduces RAPID, a novel \underline{\textbf{R}}obust \underline{\textbf{A}}daptive \underline{\textbf{P}}olicy \underline{\textbf{I}}nfusion and \underline{\textbf{D}}istillation framework, which trains specialized mix-of-policy RL agents using data synthesized by an LLM-based driving agent and online adaptation. RAPID features three key designs: 1) utilization of offline data collected from an LLM agent to distil expert knowledge into RL policies for faster real-time inference; 2) introduction of robust distillation in RL to inherit both performance and robustness from LLM-based teacher; and 3) employment of a mix-of-policy approach for joint decision decoding with a policy adapter. Through fine-tuning via online environment interaction, RAPID reduces the forgetting of LLM knowledge while maintaining adaptability to different tasks. Extensive experiments demonstrate RAPID's capability to effectively integrate LLM knowledge into scaled-down RL policies in an efficient, adaptable, and robust way. Code and checkpoints will be made publicly available upon acceptance.
Abstract:Stylization for visual content aims to add specific style patterns at the pixel level while preserving the original structural features. Compared with using predefined styles, stylization guided by reference style images is more challenging, where the main difficulty is to effectively separate style from structural elements. In this paper, we propose StyleBrush, a method that accurately captures styles from a reference image and ``brushes'' the extracted style onto other input visual content. Specifically, our architecture consists of two branches: ReferenceNet, which extracts style from the reference image, and Structure Guider, which extracts structural features from the input image, thus enabling image-guided stylization. We utilize LLM and T2I models to create a dataset comprising 100K high-quality style images, encompassing a diverse range of styles and contents with high aesthetic score. To construct training pairs, we crop different regions of the same training image. Experiments show that our approach achieves state-of-the-art results through both qualitative and quantitative analyses. We will release our code and dataset upon acceptance of the paper.
Abstract:Motion forecasting plays a pivotal role in autonomous driving systems, enabling vehicles to execute collision warnings and rational local-path planning based on predictions of the surrounding vehicles. However, prevalent methods often assume complete observed trajectories, neglecting the potential impact of missing values induced by object occlusion, scope limitation, and sensor failures. Such oversights inevitably compromise the accuracy of trajectory predictions. To tackle this challenge, we propose an end-to-end framework, termed Multiscale Transformer (MSTF), meticulously crafted for incomplete trajectory prediction. MSTF integrates a Multiscale Attention Head (MAH) and an Information Increment-based Pattern Adaptive (IIPA) module. Specifically, the MAH component concurrently captures multiscale motion representation of trajectory sequence from various temporal granularities, utilizing a multi-head attention mechanism. This approach facilitates the modeling of global dependencies in motion across different scales, thereby mitigating the adverse effects of missing values. Additionally, the IIPA module adaptively extracts continuity representation of motion across time steps by analyzing missing patterns in the data. The continuity representation delineates motion trend at a higher level, guiding MSTF to generate predictions consistent with motion continuity. We evaluate our proposed MSTF model using two large-scale real-world datasets. Experimental results demonstrate that MSTF surpasses state-of-the-art (SOTA) models in the task of incomplete trajectory prediction, showcasing its efficacy in addressing the challenges posed by missing values in motion forecasting for autonomous driving systems.
Abstract:Dataset Distillation (DD) aims to distill knowledge from extensive datasets into more compact ones while preserving performance on the test set, thereby reducing storage costs and training expenses. However, existing methods often suffer from computational intensity, particularly exhibiting suboptimal performance with large dataset sizes due to the lack of a robust theoretical framework for analyzing the DD problem. To address these challenges, we propose the BAyesian optimal CONdensation framework (BACON), which is the first work to introduce the Bayesian theoretical framework to the literature of DD. This framework provides theoretical support for enhancing the performance of DD. Furthermore, BACON formulates the DD problem as the minimization of the expected risk function in joint probability distributions using the Bayesian framework. Additionally, by analyzing the expected risk function for optimal condensation, we derive a numerically feasible lower bound based on specific assumptions, providing an approximate solution for BACON. We validate BACON across several datasets, demonstrating its superior performance compared to existing state-of-the-art methods. For instance, under the IPC-10 setting, BACON achieves a 3.46% accuracy gain over the IDM method on the CIFAR-10 dataset and a 3.10% gain on the TinyImageNet dataset. Our extensive experiments confirm the effectiveness of BACON and its seamless integration with existing methods, thereby enhancing their performance for the DD task. Code and distilled datasets are available at BACON.
Abstract:Open-vocabulary learning has emerged as a cutting-edge research area, particularly in light of the widespread adoption of vision-based foundational models. Its primary objective is to comprehend novel concepts that are not encompassed within a predefined vocabulary. One key facet of this endeavor is Visual Grounding, which entails locating a specific region within an image based on a corresponding language description. While current foundational models excel at various visual language tasks, there's a noticeable absence of models specifically tailored for open-vocabulary visual grounding. This research endeavor introduces novel and challenging OV tasks, namely Open-Vocabulary Visual Grounding and Open-Vocabulary Phrase Localization. The overarching aim is to establish connections between language descriptions and the localization of novel objects. To facilitate this, we have curated a comprehensive annotated benchmark, encompassing 7,272 OV-VG images and 1,000 OV-PL images. In our pursuit of addressing these challenges, we delved into various baseline methodologies rooted in existing open-vocabulary object detection, VG, and phrase localization frameworks. Surprisingly, we discovered that state-of-the-art methods often falter in diverse scenarios. Consequently, we developed a novel framework that integrates two critical components: Text-Image Query Selection and Language-Guided Feature Attention. These modules are designed to bolster the recognition of novel categories and enhance the alignment between visual and linguistic information. Extensive experiments demonstrate the efficacy of our proposed framework, which consistently attains SOTA performance across the OV-VG task. Additionally, ablation studies provide further evidence of the effectiveness of our innovative models. Codes and datasets will be made publicly available at https://github.com/cv516Buaa/OV-VG.
Abstract:Open-vocabulary object detection (OVOD) aims to detect the objects beyond the set of categories observed during training. This work presents a simple yet effective strategy that leverages the zero-shot classification ability of pre-trained vision-language models (VLM), such as CLIP, to classify proposals for all possible novel classes directly. Unlike previous works that ignore novel classes during training and rely solely on the region proposal network (RPN) for novel object detection, our method selectively filters proposals based on specific design criteria. The resulting sets of identified proposals serve as pseudo-labels for novel classes during the training phase. It enables our self-training strategy to improve the recall and accuracy of novel classes in a self-training manner without requiring additional annotations or datasets. We further propose a simple offline pseudo-label generation strategy to refine the object detector. Empirical evaluations on three datasets, including LVIS, V3Det, and COCO, demonstrate significant improvements over the baseline performance without incurring additional parameters or computational costs during inference. In particular, compared with previous F-VLM, our method achieves a 1.7-2.0% improvement on LVIS dataset and 2.3-3.8% improvement on the recent challenging V3Det dataset. Our method also boosts the strong baseline by 6% mAP on COCO. The code and models will be publicly available at https://github.com/xushilin1/dst-det.
Abstract:Visual Grounding (VG) aims at localizing target objects from an image based on given expressions and has made significant progress with the development of detection and vision transformer. However, existing VG methods tend to generate false-alarm objects when presented with inaccurate or irrelevant descriptions, which commonly occur in practical applications. Moreover, existing methods fail to capture fine-grained features, accurate localization, and sufficient context comprehension from the whole image and textual descriptions. To address both issues, we propose an Iterative Robust Visual Grounding (IR-VG) framework with Masked Reference based Centerpoint Supervision (MRCS). The framework introduces iterative multi-level vision-language fusion (IMVF) for better alignment. We use MRCS to ahieve more accurate localization with point-wised feature supervision. Then, to improve the robustness of VG, we also present a multi-stage false-alarm sensitive decoder (MFSD) to prevent the generation of false-alarm objects when presented with inaccurate expressions. The proposed framework is evaluated on five regular VG datasets and two newly constructed robust VG datasets. Extensive experiments demonstrate that IR-VG achieves new state-of-the-art (SOTA) results, with improvements of 25\% and 10\% compared to existing SOTA approaches on the two newly proposed robust VG datasets. Moreover, the proposed framework is also verified effective on five regular VG datasets. Codes and models will be publicly at https://github.com/cv516Buaa/IR-VG.
Abstract:Change detection is an essential and widely utilized task in remote sensing that aims to detect and analyze changes occurring in the same geographical area over time, which has broad applications in urban development, agricultural surveys, and land cover monitoring. Detecting changes in remote sensing images is a complex challenge due to various factors, including variations in image quality, noise, registration errors, illumination changes, complex landscapes, and spatial heterogeneity. In recent years, deep learning has emerged as a powerful tool for feature extraction and addressing these challenges. Its versatility has resulted in its widespread adoption for numerous image-processing tasks. This paper presents a comprehensive survey of significant advancements in change detection for remote sensing images over the past decade. We first introduce some preliminary knowledge for the change detection task, such as problem definition, datasets, evaluation metrics, and transformer basics, as well as provide a detailed taxonomy of existing algorithms from three different perspectives: algorithm granularity, supervision modes, and learning frameworks in the methodology section. This survey enables readers to gain systematic knowledge of change detection tasks from various angles. We then summarize the state-of-the-art performance on several dominant change detection datasets, providing insights into the strengths and limitations of existing algorithms. Based on our survey, some future research directions for change detection in remote sensing are well identified. This survey paper will shed some light on the community and inspire further research efforts in the change detection task.