Abstract:Agentic systems have recently become the dominant paradigm for formal theorem proving, achieving strong performance by coordinating multiple models and tools. However, existing approaches often rely on task-specific pipelines and trained formal provers, limiting their flexibility and reproducibility. In this paper, we propose the paradigm that directly uses a general coding agent as a formal math reasoner. This paradigm is motivated by (1) A general coding agent provides a natural interface for diverse reasoning tasks beyond proving, (2) Performance can be improved by simply replacing the underlying base model, without training, and (3) MCP enables flexible extension and autonomous calling of specialized tools, avoiding complex design. Based on this paradigm, we introduce Numina-Lean-Agent, which combines Claude Code with Numina-Lean-MCP to enable autonomous interaction with Lean, retrieval of relevant theorems, informal proving and auxiliary reasoning tools. Using Claude Opus 4.5 as the base model, Numina-Lean-Agent solves all problems in Putnam 2025 (12 / 12), matching the best closed-source system. Beyond benchmark evaluation, we further demonstrate its generality by interacting with mathematicians to successfully formalize the Brascamp-Lieb theorem. We release Numina-Lean-Agent and all solutions at https://github.com/project-numina/numina-lean-agent.
Abstract:We introduce Youtu-LLM, a lightweight yet powerful language model that harmonizes high computational efficiency with native agentic intelligence. Unlike typical small models that rely on distillation, Youtu-LLM (1.96B) is pre-trained from scratch to systematically cultivate reasoning and planning capabilities. The key technical advancements are as follows: (1) Compact Architecture with Long-Context Support: Built on a dense Multi-Latent Attention (MLA) architecture with a novel STEM-oriented vocabulary, Youtu-LLM supports a 128k context window. This design enables robust long-context reasoning and state tracking within a minimal memory footprint, making it ideal for long-horizon agent and reasoning tasks. (2) Principled "Commonsense-STEM-Agent" Curriculum: We curated a massive corpus of approximately 11T tokens and implemented a multi-stage training strategy. By progressively shifting the pre-training data distribution from general commonsense to complex STEM and agentic tasks, we ensure the model acquires deep cognitive abilities rather than superficial alignment. (3) Scalable Agentic Mid-training: Specifically for the agentic mid-training, we employ diverse data construction schemes to synthesize rich and varied trajectories across math, coding, and tool-use domains. This high-quality data enables the model to internalize planning and reflection behaviors effectively. Extensive evaluations show that Youtu-LLM sets a new state-of-the-art for sub-2B LLMs. On general benchmarks, it achieves competitive performance against larger models, while on agent-specific tasks, it significantly surpasses existing SOTA baselines, demonstrating that lightweight models can possess strong intrinsic agentic capabilities.




Abstract:Cross-modal retrieval is essential for interpreting cultural heritage data, but its effectiveness is often limited by incomplete or inconsistent textual descriptions, caused by historical data loss and the high cost of expert annotation. While large language models (LLMs) offer a promising solution by enriching textual descriptions, their outputs frequently suffer from hallucinations or miss visually grounded details. To address these challenges, we propose $C^3$, a data augmentation framework that enhances cross-modal retrieval performance by improving the completeness and consistency of LLM-generated descriptions. $C^3$ introduces a completeness evaluation module to assess semantic coverage using both visual cues and language-model outputs. Furthermore, to mitigate factual inconsistencies, we formulate a Markov Decision Process to supervise Chain-of-Thought reasoning, guiding consistency evaluation through adaptive query control. Experiments on the cultural heritage datasets CulTi and TimeTravel, as well as on general benchmarks MSCOCO and Flickr30K, demonstrate that $C^3$ achieves state-of-the-art performance in both fine-tuned and zero-shot settings.
Abstract:Math reasoning has been one crucial ability of large language models (LLMs), where significant advancements have been achieved in recent years. However, most efforts focus on LLMs by curating high-quality annotation data and intricate training (or inference) paradigms, while the math reasoning performance of multi-modal LLMs (MLLMs) remains lagging behind. Since the MLLM typically consists of an LLM and a vision block, we wonder: Can MLLMs directly absorb math reasoning abilities from off-the-shelf math LLMs without tuning? Recent model-merging approaches may offer insights into this question. However, they overlook the alignment between the MLLM and LLM, where we find that there is a large gap between their parameter spaces, resulting in lower performance. Our empirical evidence reveals two key factors behind this issue: the identification of crucial reasoning-associated layers in the model and the mitigation of the gaps in parameter space. Based on the empirical insights, we propose IP-Merging that first identifies the reasoning-associated parameters in both MLLM and Math LLM, then projects them into the subspace of MLLM, aiming to maintain the alignment, and finally merges parameters in this subspace. IP-Merging is a tuning-free approach since parameters are directly adjusted. Extensive experiments demonstrate that our IP-Merging method can enhance the math reasoning ability of MLLMs directly from Math LLMs without compromising their other capabilities.




Abstract:Parameter transfer is a central paradigm in transfer learning, enabling knowledge reuse across tasks and domains by sharing model parameters between upstream and downstream models. However, when only a subset of parameters from the upstream model is transferred to the downstream model, there remains a lack of theoretical understanding of the conditions under which such partial parameter reuse is beneficial and of the factors that govern its effectiveness. To address this gap, we analyze a setting in which both the upstream and downstream models are ReLU convolutional neural networks (CNNs). Within this theoretical framework, we characterize how the inherited parameters act as carriers of universal knowledge and identify key factors that amplify their beneficial impact on the target task. Furthermore, our analysis provides insight into why, in certain cases, transferring parameters can lead to lower test accuracy on the target task than training a new model from scratch. Numerical experiments and real-world data experiments are conducted to empirically validate our theoretical findings.




Abstract:Context recognition (SR) is a fundamental task in computer vision that aims to extract structured semantic summaries from images by identifying key events and their associated entities. Specifically, given an input image, the model must first classify the main visual events (verb classification), then identify the participating entities and their semantic roles (semantic role labeling), and finally localize these entities in the image (semantic role localization). Existing methods treat verb classification as a single-label problem, but we show through a comprehensive analysis that this formulation fails to address the inherent ambiguity in visual event recognition, as multiple verb categories may reasonably describe the same image. This paper makes three key contributions: First, we reveal through empirical analysis that verb classification is inherently a multi-label problem due to the ubiquitous semantic overlap between verb categories. Second, given the impracticality of fully annotating large-scale datasets with multiple labels, we propose to reformulate verb classification as a single positive multi-label learning (SPMLL) problem - a novel perspective in SR research. Third, we design a comprehensive multi-label evaluation benchmark for SR that is carefully designed to fairly evaluate model performance in a multi-label setting. To address the challenges of SPMLL, we futher develop the Graph Enhanced Verb Multilayer Perceptron (GE-VerbMLP), which combines graph neural networks to capture label correlations and adversarial training to optimize decision boundaries. Extensive experiments on real-world datasets show that our approach achieves more than 3\% MAP improvement while remaining competitive on traditional top-1 and top-5 accuracy metrics.
Abstract:LayerNorm is pivotal in Vision Transformers (ViTs), yet its fine-tuning dynamics under data scarcity and domain shifts remain underexplored. This paper shows that shifts in LayerNorm parameters after fine-tuning (LayerNorm shifts) are indicative of the transitions between source and target domains; its efficacy is contingent upon the degree to which the target training samples accurately represent the target domain, as quantified by our proposed Fine-tuning Shift Ratio ($FSR$). Building on this, we propose a simple yet effective rescaling mechanism using a scalar $\lambda$ that is negatively correlated to $FSR$ to align learned LayerNorm shifts with those ideal shifts achieved under fully representative data, combined with a cyclic framework that further enhances the LayerNorm fine-tuning. Extensive experiments across natural and pathological images, in both in-distribution (ID) and out-of-distribution (OOD) settings, and various target training sample regimes validate our framework. Notably, OOD tasks tend to yield lower $FSR$ and higher $\lambda$ in comparison to ID cases, especially with scarce data, indicating under-represented target training samples. Moreover, ViTFs fine-tuned on pathological data behave more like ID settings, favoring conservative LayerNorm updates. Our findings illuminate the underexplored dynamics of LayerNorm in transfer learning and provide practical strategies for LayerNorm fine-tuning.
Abstract:Plane Geometry Diagram Synthesis has been a crucial task in computer graphics, with applications ranging from educational tools to AI-driven mathematical reasoning. Traditionally, we rely on computer tools (e.g., Matplotlib and GeoGebra) to manually generate precise diagrams, but it usually requires huge, complicated calculations cost. Recently, researchers start to work on learning-based methods (e.g., Stable Diffusion and GPT4) to automatically generate diagrams, saving operational cost but usually suffering from limited realism and insufficient accuracy. In this paper, we propose a novel framework GeoSDF to automatically generate diagrams efficiently and accurately with Signed Distance Field (SDF). Specifically, we first represent geometric elements in the SDF, then construct a series of constraint functions to represent geometric relationships, next we optimize such constraint functions to get an optimized field of both elements and constraints, finally by rendering the optimized field, we can obtain the synthesized diagram. In our GeoSDF, we define a symbolic language to easily represent geometric elements and those constraints, and our synthesized geometry diagrams can be self-verified in the SDF, ensuring both mathematical accuracy and visual plausibility. In experiments, our GeoSDF synthesized both normal high-school level and IMO-level geometry diagrams. Through both qualitative and quantitative analysis, we can see that synthesized diagrams are realistic and accurate, and our synthesizing process is simple and efficient. Furthermore, we obtain a very high accuracy of solving geometry problems (over 95\% while the current SOTA accuracy is around 75%) by leveraging our self-verification property. All of these demonstrate the advantage of GeoSDF, paving the way for more sophisticated, accurate, and flexible generation of geometric diagrams for a wide array of applications.




Abstract:Training Large Language Models (LLMs) is prohibitively expensive, creating a critical scaling gap where insights from small-scale experiments often fail to transfer to resource-intensive production systems, thereby hindering efficient innovation. To bridge this, we introduce Farseer, a novel and refined scaling law offering enhanced predictive accuracy across scales. By systematically constructing a model loss surface $L(N,D)$, Farseer achieves a significantly better fit to empirical data than prior laws (e.g., Chinchilla's law). Our methodology yields accurate, robust, and highly generalizable predictions, demonstrating excellent extrapolation capabilities, improving upon Chinchilla's law by reducing extrapolation error by 433\%. This allows for the reliable evaluation of competing training strategies across all $(N,D)$ settings, enabling conclusions from small-scale ablation studies to be confidently extrapolated to predict large-scale performance. Furthermore, Farseer provides new insights into optimal compute allocation, better reflecting the nuanced demands of modern LLM training. To validate our approach, we trained an extensive suite of approximately 1,000 LLMs across diverse scales and configurations, consuming roughly 3 million NVIDIA H100 GPU hours. We are comprehensively open-sourcing all models, data, results, and logs at https://github.com/Farseer-Scaling-Law/Farseer to foster further research.




Abstract:Diffusion-based garment synthesis tasks primarily focus on the design phase in the fashion domain, while the garment production process remains largely underexplored. To bridge this gap, we introduce a new task: Flat Sketch to Realistic Garment Image (FS2RG), which generates realistic garment images by integrating flat sketches and textual guidance. FS2RG presents two key challenges: 1) fabric characteristics are solely guided by textual prompts, providing insufficient visual supervision for diffusion-based models, which limits their ability to capture fine-grained fabric details; 2) flat sketches and textual guidance may provide conflicting information, requiring the model to selectively preserve or modify garment attributes while maintaining structural coherence. To tackle this task, we propose HiGarment, a novel framework that comprises two core components: i) a multi-modal semantic enhancement mechanism that enhances fabric representation across textual and visual modalities, and ii) a harmonized cross-attention mechanism that dynamically balances information from flat sketches and text prompts, allowing controllable synthesis by generating either sketch-aligned (image-biased) or text-guided (text-biased) outputs. Furthermore, we collect Multi-modal Detailed Garment, the largest open-source dataset for garment generation. Experimental results and user studies demonstrate the effectiveness of HiGarment in garment synthesis. The code and dataset will be released.