Abstract:Existing unsupervised distillation-based methods rely on the differences between encoded and decoded features to locate abnormal regions in test images. However, the decoder trained only on normal samples still reconstructs abnormal patch features well, degrading performance. This issue is particularly pronounced in unsupervised multi-class anomaly detection tasks. We attribute this behavior to over-generalization(OG) of decoder: the significantly increasing diversity of patch patterns in multi-class training enhances the model generalization on normal patches, but also inadvertently broadens its generalization to abnormal patches. To mitigate OG, we propose a novel approach that leverages class-agnostic learnable prompts to capture common textual normality across various visual patterns, and then apply them to guide the decoded features towards a normal textual representation, suppressing over-generalization of the decoder on abnormal patterns. To further improve performance, we also introduce a gated mixture-of-experts module to specialize in handling diverse patch patterns and reduce mutual interference between them in multi-class training. Our method achieves competitive performance on the MVTec AD and VisA datasets, demonstrating its effectiveness.
Abstract:While deep learning-based robotic grasping technology has demonstrated strong adaptability, its computational complexity has also significantly increased, making it unsuitable for scenarios with high real-time requirements. Therefore, we propose a low computational complexity and high accuracy model named VMGNet for robotic grasping. For the first time, we introduce the Visual State Space into the robotic grasping field to achieve linear computational complexity, thereby greatly reducing the model's computational cost. Meanwhile, to improve the accuracy of the model, we propose an efficient and lightweight multi-scale feature fusion module, named Fusion Bridge Module, to extract and fuse information at different scales. We also present a new loss function calculation method to enhance the importance differences between subtasks, improving the model's fitting ability. Experiments show that VMGNet has only 8.7G Floating Point Operations and an inference time of 8.1 ms on our devices. VMGNet also achieved state-of-the-art performance on the Cornell and Jacquard public datasets. To validate VMGNet's effectiveness in practical applications, we conducted real grasping experiments in multi-object scenarios, and VMGNet achieved an excellent performance with a 94.4% success rate in real-world grasping tasks. The video for the real-world robotic grasping experiments is available at https://youtu.be/S-QHBtbmLc4.
Abstract:This paper has proposed a Digital Twin (DT) framework for real-time motion and pose control of soft robotic grippers. The developed DT is based on an industrial robot workstation, integrated with our newly proposed approach for soft gripper control, primarily based on computer vision, for setting the driving pressure for desired gripper status in real-time. Knowing the gripper motion, the gripper parameters (e.g. curvatures and bending angles, etc.) are simulated by kinematics modelling in Unity 3D, which is based on four-piecewise constant curvature kinematics. The mapping in between the driving pressure and gripper parameters is achieved by implementing OpenCV based image processing algorithms and data fitting. Results show that our DT-based approach can achieve satisfactory performance in real-time control of soft gripper manipulation, which can satisfy a wide range of industrial applications.
Abstract:Millimeter-wave radar is promising to provide robust and accurate vital sign monitoring in an unobtrusive manner. However, the radar signal might be distorted in propagation by ambient noise or random body movement, ruining the subtle cardiac activities and destroying the vital sign recovery. In particular, the recovery of electrocardiogram (ECG) signal heavily relies on the deep-learning model and is sensitive to noise. Therefore, this work creatively deconstructs the radar-based ECG recovery into three individual tasks and proposes a multi-task learning (MTL) framework, radarODE-MTL, to increase the robustness against consistent and abrupt noises. In addition, to alleviate the potential conflicts in optimizing individual tasks, a novel multi-task optimization strategy, eccentric gradient alignment (EGA), is proposed to dynamically trim the task-specific gradients based on task difficulties in orthogonal space. The proposed radarODE-MTL with EGA is evaluated on the public dataset with prominent improvements in accuracy, and the performance remains consistent under noises. The experimental results indicate that radarODE-MTL could reconstruct accurate ECG signals robustly from radar signals and imply the application prospect in real-life situations. The code is available at: http://github.com/ZYY0844/radarODE-MTL.
Abstract:Recently, visual grounding and multi-sensors setting have been incorporated into perception system for terrestrial autonomous driving systems and Unmanned Surface Vehicles (USVs), yet the high complexity of modern learning-based visual grounding model using multi-sensors prevents such model to be deployed on USVs in the real-life. To this end, we design a low-power multi-task model named NanoMVG for waterway embodied perception, guiding both camera and 4D millimeter-wave radar to locate specific object(s) through natural language. NanoMVG can perform both box-level and mask-level visual grounding tasks simultaneously. Compared to other visual grounding models, NanoMVG achieves highly competitive performance on the WaterVG dataset, particularly in harsh environments and boasts ultra-low power consumption for long endurance.
Abstract:Radar-based contactless cardiac monitoring has become a popular research direction recently, but the fine-grained electrocardiogram (ECG) signal is still hard to reconstruct from millimeter-wave radar signal. The key obstacle is to decouple the cardiac activities in the electrical domain (i.e., ECG) from that in the mechanical domain (i.e., heartbeat), and most existing research only uses pure data-driven methods to map such domain transformation as a black box. Therefore, this work first proposes a signal model for domain transformation, and then a novel deep learning framework called radarODE is designed to fuse the temporal and morphological features extracted from radar signals and generate ECG. In addition, ordinary differential equations are embedded in radarODE as a decoder to provide morphological prior, helping the convergence of the model training and improving the robustness under body movements. After being validated on the dataset, the proposed radarODE achieves better performance compared with the benchmark in terms of missed detection rate, root mean square error, Pearson correlation coefficient with the improvement of 9%, 16% and 19%, respectively. The validation results imply that radarODE is capable of recovering ECG signals from radar signals with high fidelity and can be potentially implemented in real-life scenarios.
Abstract:In the rapidly evolving field of 3D reconstruction, 3D Gaussian Splatting (3DGS) and 2D Gaussian Splatting (2DGS) represent significant advancements. Although 2DGS compresses 3D Gaussian primitives into 2D Gaussian surfels to effectively enhance mesh extraction quality, this compression can potentially lead to a decrease in rendering quality. Additionally, unreliable densification processes and the calculation of depth through the accumulation of opacity can compromise the detail of mesh extraction. To address this issue, we introduce MVG-Splatting, a solution guided by Multi-View considerations. Specifically, we integrate an optimized method for calculating normals, which, combined with image gradients, helps rectify inconsistencies in the original depth computations. Additionally, utilizing projection strategies akin to those in Multi-View Stereo (MVS), we propose an adaptive quantile-based method that dynamically determines the level of additional densification guided by depth maps, from coarse to fine detail. Experimental evidence demonstrates that our method not only resolves the issues of rendering quality degradation caused by depth discrepancies but also facilitates direct mesh extraction from dense Gaussian point clouds using the Marching Cubes algorithm. This approach significantly enhances the overall fidelity and accuracy of the 3D reconstruction process, ensuring that both the geometric details and visual quality.
Abstract:Embodied perception is essential for intelligent vehicles and robots, enabling more natural interaction and task execution. However, these advancements currently embrace vision level, rarely focusing on using 3D modeling sensors, which limits the full understanding of surrounding objects with multi-granular characteristics. Recently, as a promising automotive sensor with affordable cost, 4D Millimeter-Wave radar provides denser point clouds than conventional radar and perceives both semantic and physical characteristics of objects, thus enhancing the reliability of perception system. To foster the development of natural language-driven context understanding in radar scenes for 3D grounding, we construct the first dataset, Talk2Radar, which bridges these two modalities for 3D Referring Expression Comprehension. Talk2Radar contains 8,682 referring prompt samples with 20,558 referred objects. Moreover, we propose a novel model, T-RadarNet for 3D REC upon point clouds, achieving state-of-the-art performances on Talk2Radar dataset compared with counterparts, where Deformable-FPN and Gated Graph Fusion are meticulously designed for efficient point cloud feature modeling and cross-modal fusion between radar and text features, respectively. Further, comprehensive experiments are conducted to give a deep insight into radar-based 3D REC. We release our project at https://github.com/GuanRunwei/Talk2Radar.
Abstract:In reality, images often exhibit multiple degradations, such as rain and fog at night (triple degradations). However, in many cases, individuals may not want to remove all degradations, for instance, a blurry lens revealing a beautiful snowy landscape (double degradations). In such scenarios, people may only desire to deblur. These situations and requirements shed light on a new challenge in image restoration, where a model must perceive and remove specific degradation types specified by human commands in images with multiple degradations. We term this task Referring Flexible Image Restoration (RFIR). To address this, we first construct a large-scale synthetic dataset called RFIR, comprising 153,423 samples with the degraded image, text prompt for specific degradation removal and restored image. RFIR consists of five basic degradation types: blur, rain, haze, low light and snow while six main sub-categories are included for varying degrees of degradation removal. To tackle the challenge, we propose a novel transformer-based multi-task model named TransRFIR, which simultaneously perceives degradation types in the degraded image and removes specific degradation upon text prompt. TransRFIR is based on two devised attention modules, Multi-Head Agent Self-Attention (MHASA) and Multi-Head Agent Cross Attention (MHACA), where MHASA and MHACA introduce the agent token and reach the linear complexity, achieving lower computation cost than vanilla self-attention and cross-attention and obtaining competitive performances. Our TransRFIR achieves state-of-the-art performances compared with other counterparts and is proven as an effective architecture for image restoration. We release our project at https://github.com/GuanRunwei/FIR-CP.
Abstract:The perception of waterways based on human intent is significant for autonomous navigation and operations of Unmanned Surface Vehicles (USVs) in water environments. Inspired by visual grounding, we introduce WaterVG, the first visual grounding dataset designed for USV-based waterway perception based on human prompts. WaterVG encompasses prompts describing multiple targets, with annotations at the instance level including bounding boxes and masks. Notably, WaterVG includes 11,568 samples with 34,987 referred targets, whose prompts integrates both visual and radar characteristics. The pattern of text-guided two sensors equips a finer granularity of text prompts with visual and radar features of referred targets. Moreover, we propose a low-power visual grounding model, Potamoi, which is a multi-task model with a well-designed Phased Heterogeneous Modality Fusion (PHMF) mode, including Adaptive Radar Weighting (ARW) and Multi-Head Slim Cross Attention (MHSCA). Exactly, ARW extracts required radar features to fuse with vision for prompt alignment. MHSCA is an efficient fusion module with a remarkably small parameter count and FLOPs, elegantly fusing scenario context captured by two sensors with linguistic features, which performs expressively on visual grounding tasks. Comprehensive experiments and evaluations have been conducted on WaterVG, where our Potamoi archives state-of-the-art performances compared with counterparts.