Abstract:Adaptive Traffic Signal Control (ATSC) has become a popular research topic in intelligent transportation systems. Regional Traffic Signal Control (RTSC) using the Multi-agent Deep Reinforcement Learning (MADRL) technique has become a promising approach for ATSC due to its ability to achieve the optimum trade-off between scalability and optimality. Most existing RTSC approaches partition a traffic network into several disjoint regions, followed by applying centralized reinforcement learning techniques to each region. However, the pursuit of cooperation among RTSC agents still remains an open issue and no communication strategy for RTSC agents has been investigated. In this paper, we propose communication strategies to capture the correlation of micro-traffic states among lanes and the correlation of macro-traffic states among intersections. We first justify the evolution equation of the RTSC process is Markovian via a system of store-and-forward queues. Next, based on the evolution equation, we propose two GAT-Aggregated (GA2) communication modules--GA2-Naive and GA2-Aug to extract both intra-region and inter-region correlations between macro and micro traffic states. While GA2-Naive only considers the movements at each intersection, GA2-Aug also considers the lane-changing behavior of vehicles. Two proposed communication modules are then aggregated into two existing novel RTSC frameworks--RegionLight and Regional-DRL. Experimental results demonstrate that both GA2-Naive and GA2-Aug effectively improve the performance of existing RTSC frameworks under both real and synthetic scenarios. Hyperparameter testing also reveals the robustness and potential of our communication modules in large-scale traffic networks.
Abstract:Cell-free massive multiple-input multiple-output (CFmMIMO) coordinates a great number of distributed access points (APs) with central processing units (CPUs), effectively reducing interference and ensuring uniform service quality for user equipment (UEs). However, its cooperative nature can result in intense fronthaul signaling between CPUs in large-scale networks. To reduce the inter-CPU fronthaul signaling for systems with limited fronthaul capacity, we propose a low-complexity online UE-AP association approach for scalable CFmMIMO that combines network- and user-centric clustering methodologies, relies on local channel information only, and can handle dynamic UE arrivals. Numerical results demonstrate that compared to the state-of-the-art method on fronthaul signaling minimization, our approach can save up to 94% of the fronthaul signaling load and 83% of the CPU processing power at the cost of only up to 8.6% spectral efficiency loss, or no loss in some cases.
Abstract:Traffic surveillance is an important issue in Intelligent Transportation Systems(ITS). In this paper, we propose a novel surveillance system to detect and track vehicles using ubiquitously deployed magnetic sensors. That is, multiple magnetic sensors, mounted roadside and along lane boundary lines, are used to track various vehicles. Real-time vehicle detection data are reported from magnetic sensors, collected into data center via base stations, and processed to depict vehicle trajectories including vehicle position, timestamp, speed and type. We first define a vehicle trajectory tracking problem. We then propose a graph-based data association algorithm to track each detected vehicle, and design a related online algorithm framework respectively. We finally validate the performance via both experimental simulation and real-world road test. The experimental results demonstrate that the proposed solution provides a cost-effective solution to capture the driving status of vehicles and on that basis form various traffic safety and efficiency applications.