The Institute of Statistical Mathematics
Abstract:Objectives: Large language models (LLMs) can harness medical knowledge for intelligent question answering (Q&A), promising support for auxiliary diagnosis and medical talent cultivation. However, there is a deficiency of highly efficient retrieval-augmented generation (RAG) frameworks within the domain of Traditional Chinese Medicine (TCM). Our purpose is to observe the effect of the Tree-Organized Self-Reflective Retrieval (TOSRR) framework on LLMs in TCM Q&A tasks. Materials and Methods: We introduce the novel approach of knowledge organization, constructing a tree structure knowledge base with hierarchy. At inference time, our self-reflection framework retrieves from this knowledge base, integrating information across chapters. Questions from the TCM Medical Licensing Examination (MLE) and the college Classics Course Exam (CCE) were randomly selected as benchmark datasets. Results: By coupling with GPT-4, the framework can improve the best performance on the TCM MLE benchmark by 19.85% in absolute accuracy, and improve recall accuracy from 27% to 38% on CCE datasets. In manual evaluation, the framework improves a total of 18.52 points across dimensions of safety, consistency, explainability, compliance, and coherence. Conclusion: The TOSRR framework can effectively improve LLM's capability in Q&A tasks of TCM.
Abstract:Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, and RNA. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (briefly, NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) achieving state-of-the-art performance in tasks like SMILES-to-IUPAC translation and retrosynthesis on USPTO-50k. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.
Abstract:This paper presents a comprehensive framework for time series prediction using a hybrid model that combines ARIMA and LSTM. The model incorporates feature engineering techniques, including embedding and PCA, to transform raw data into a lower-dimensional representation while retaining key information. The embedding technique is used to convert categorical data into continuous vectors, facilitating the capture of complex relationships. PCA is applied to reduce dimensionality and extract principal components, enhancing model performance and computational efficiency. To handle both linear and nonlinear patterns in the data, the ARIMA model captures linear trends, while the LSTM model models complex nonlinear dependencies. The hybrid model is trained on historical data and achieves high accuracy, as demonstrated by low RMSE and MAE scores. Additionally, the paper employs the run test to assess the randomness of sequences, providing insights into the underlying patterns. Ablation studies are conducted to validate the roles of different components in the model, demonstrating the significance of each module. The paper also utilizes the SHAP method to quantify the impact of traditional advantages on the predicted results, offering a detailed understanding of feature importance. The KNN method is used to determine the optimal prediction interval, further enhancing the model's accuracy. The results highlight the effectiveness of combining traditional statistical methods with modern deep learning techniques for robust time series forecasting in Sports.
Abstract:The robustness of Graph Neural Networks (GNNs) has become an increasingly important topic due to their expanding range of applications. Various attack methods have been proposed to explore the vulnerabilities of GNNs, ranging from Graph Modification Attacks (GMA) to the more practical and flexible Graph Injection Attacks (GIA). However, existing methods face two key challenges: (i) their reliance on surrogate models, which often leads to reduced attack effectiveness due to structural differences and prior biases, and (ii) existing GIA methods often sacrifice attack success rates in undefended settings to bypass certain defense models, thereby limiting their overall effectiveness. To overcome these limitations, we propose QUGIA, a Query-based and Unnoticeable Graph Injection Attack. QUGIA injects nodes by first selecting edges based on victim node connections and then generating node features using a Bayesian framework. This ensures that the injected nodes are similar to the original graph nodes, implicitly preserving homophily and making the attack more unnoticeable. Unlike previous methods, QUGIA does not rely on surrogate models, thereby avoiding performance degradation and achieving better generalization. Extensive experiments on six real-world datasets with diverse characteristics demonstrate that QUGIA achieves unnoticeable attacks and outperforms state-of-the-art attackers. The code will be released upon acceptance.
Abstract:Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost-driven by high-order tensor product (TP) operations-restricts their scalability to large molecular systems with extensive basis sets. To address this challenge, we introduce SPHNet, an efficient and scalable equivariant network that incorporates adaptive sparsity into Hamiltonian prediction. SPHNet employs two innovative sparse gates to selectively constrain non-critical interaction combinations, significantly reducing tensor product computations while maintaining accuracy. To optimize the sparse representation, we develop a Three-phase Sparsity Scheduler, ensuring stable convergence and achieving high performance at sparsity rates of up to 70 percent. Extensive evaluations on QH9 and PubchemQH datasets demonstrate that SPHNet achieves state-of-the-art accuracy while providing up to a 7x speedup over existing models. Beyond Hamiltonian prediction, the proposed sparsification techniques also hold significant potential for improving the efficiency and scalability of other SE(3) equivariant networks, further broadening their applicability and impact.
Abstract:Graph Neural Networks (GNNs) have achieved notable success in tasks such as social and transportation networks. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, raising significant concerns about their reliability in real-world applications. Despite initial efforts to defend against specific graph backdoor attacks, existing defense methods face two main challenges: either the inability to establish a clear distinction between triggers and clean nodes, resulting in the removal of many clean nodes, or the failure to eliminate the impact of triggers, making it challenging to restore the target nodes to their pre-attack state. Through empirical analysis of various existing graph backdoor attacks, we observe that the triggers generated by these methods exhibit over-similarity in both features and structure. Based on this observation, we propose a novel graph backdoor defense method SimGuard. We first utilizes a similarity-based metric to detect triggers and then employs contrastive learning to train a backdoor detector that generates embeddings capable of separating triggers from clean nodes, thereby improving detection efficiency. Extensive experiments conducted on real-world datasets demonstrate that our proposed method effectively defends against various graph backdoor attacks while preserving performance on clean nodes. The code will be released upon acceptance.
Abstract:Equivariant Graph Neural Networks (EGNNs) have demonstrated significant success in modeling microscale systems, including those in chemistry, biology and materials science. However, EGNNs face substantial computational challenges due to the high cost of constructing edge features via spherical tensor products, making them impractical for large-scale systems. To address this limitation, we introduce E2Former, an equivariant and efficient transformer architecture that incorporates the Wigner $6j$ convolution (Wigner $6j$ Conv). By shifting the computational burden from edges to nodes, the Wigner $6j$ Conv reduces the complexity from $O(|\mathcal{E}|)$ to $ O(| \mathcal{V}|)$ while preserving both the model's expressive power and rotational equivariance. We show that this approach achieves a 7x-30x speedup compared to conventional $\mathrm{SO}(3)$ convolutions. Furthermore, our empirical results demonstrate that the derived E2Former mitigates the computational challenges of existing approaches without compromising the ability to capture detailed geometric information. This development could suggest a promising direction for scalable and efficient molecular modeling.
Abstract:Multi-modal recommender systems (MMRS) have gained significant attention due to their ability to leverage information from various modalities to enhance recommendation quality. However, existing negative sampling techniques often struggle to effectively utilize the multi-modal data, leading to suboptimal performance. In this paper, we identify two key challenges in negative sampling for MMRS: (1) producing cohesive negative samples contrasting with positive samples and (2) maintaining a balanced influence across different modalities. To address these challenges, we propose NegGen, a novel framework that utilizes multi-modal large language models (MLLMs) to generate balanced and contrastive negative samples. We design three different prompt templates to enable NegGen to analyze and manipulate item attributes across multiple modalities, and then generate negative samples that introduce better supervision signals and ensure modality balance. Furthermore, NegGen employs a causal learning module to disentangle the effect of intervened key features and irrelevant item attributes, enabling fine-grained learning of user preferences. Extensive experiments on real-world datasets demonstrate the superior performance of NegGen compared to state-of-the-art methods in both negative sampling and multi-modal recommendation.
Abstract:We introduce MiniMax-01 series, including MiniMax-Text-01 and MiniMax-VL-01, which are comparable to top-tier models while offering superior capabilities in processing longer contexts. The core lies in lightning attention and its efficient scaling. To maximize computational capacity, we integrate it with Mixture of Experts (MoE), creating a model with 32 experts and 456 billion total parameters, of which 45.9 billion are activated for each token. We develop an optimized parallel strategy and highly efficient computation-communication overlap techniques for MoE and lightning attention. This approach enables us to conduct efficient training and inference on models with hundreds of billions of parameters across contexts spanning millions of tokens. The context window of MiniMax-Text-01 can reach up to 1 million tokens during training and extrapolate to 4 million tokens during inference at an affordable cost. Our vision-language model, MiniMax-VL-01 is built through continued training with 512 billion vision-language tokens. Experiments on both standard and in-house benchmarks show that our models match the performance of state-of-the-art models like GPT-4o and Claude-3.5-Sonnet while offering 20-32 times longer context window. We publicly release MiniMax-01 at https://github.com/MiniMax-AI.
Abstract:Voice Conversion (VC) aims to convert the style of a source speaker, such as timbre and pitch, to the style of any target speaker while preserving the linguistic content. However, the ground truth of the converted speech does not exist in a non-parallel VC scenario, which induces the train-inference mismatch problem. Moreover, existing methods still have an inaccurate pitch and low speaker adaptation quality, there is a significant disparity in pitch between the source and target speaker style domains. As a result, the models tend to generate speech with hoarseness, posing challenges in achieving high-quality voice conversion. In this study, we propose CycleFlow, a novel VC approach that leverages cycle consistency in conditional flow matching (CFM) for speaker timbre adaptation training on non-parallel data. Furthermore, we design a Dual-CFM based on VoiceCFM and PitchCFM to generate speech and improve speaker pitch adaptation quality. Experiments show that our method can significantly improve speaker similarity, generating natural and higher-quality speech.