for the RadonPy consortium
Abstract:Safety is a fundamental challenge in reinforcement learning (RL), particularly in real-world applications such as autonomous driving, robotics, and healthcare. To address this, Constrained Markov Decision Processes (CMDPs) are commonly used to enforce safety constraints while optimizing performance. However, existing methods often suffer from significant safety violations or require a high sample complexity to generate near-optimal policies. We address two settings: relaxed feasibility, where small violations are allowed, and strict feasibility, where no violation is allowed. We propose a model-based primal-dual algorithm that balances regret and bounded constraint violations, drawing on techniques from online RL and constrained optimization. For relaxed feasibility, we prove that our algorithm returns an $\varepsilon$-optimal policy with $\varepsilon$-bounded violation with arbitrarily high probability, requiring $\tilde{O}\left(\frac{SAH^3}{\varepsilon^2}\right)$ learning episodes, matching the lower bound for unconstrained MDPs. For strict feasibility, we prove that our algorithm returns an $\varepsilon$-optimal policy with zero violation with arbitrarily high probability, requiring $\tilde{O}\left(\frac{SAH^5}{\varepsilon^2ζ^2}\right)$ learning episodes, where $ζ$ is the problem-dependent Slater constant characterizing the size of the feasible region. This result matches the lower bound for learning CMDPs with access to a generative model. Our results demonstrate that learning CMDPs in an online setting is as easy as learning with a generative model and is no more challenging than learning unconstrained MDPs when small violations are allowed.
Abstract:Reinforcement learning (RL) has enhanced the capabilities of large language models (LLMs) through reward-driven training. Nevertheless, this process can introduce excessively long responses, inflating inference latency and computational overhead. Prior length-control approaches typically rely on fixed heuristic reward shaping, which can misalign with the task objective and require brittle tuning. In this work, we propose LACONIC, a reinforcement learning method that enforces a target token budget during training. Specifically, we update policy models using an augmented objective that combines the task reward with a length-based cost. To balance brevity and task performance, the cost scale is adaptively adjusted throughout training. This yields robust length control while preserving task reward. We provide a theoretical guarantee that support the method. Across mathematical reasoning models and datasets, LACONIC preserves or improves pass@1 while reducing output length by over 50%. It maintains out-of-domain performance on general knowledge and multilingual benchmarks with 44% fewer tokens. Moreover, LACONIC integrates into standard RL-tuning with no inference changes and minimal deployment overhead.
Abstract:Monocular normal estimation aims to estimate the normal map from a single RGB image of an object under arbitrary lights. Existing methods rely on deep models to directly predict normal maps. However, they often suffer from 3D misalignment: while the estimated normal maps may appear to have a correct appearance, the reconstructed surfaces often fail to align with the geometric details. We argue that this misalignment stems from the current paradigm: the model struggles to distinguish and reconstruct varying geometry represented in normal maps, as the differences in underlying geometry are reflected only through relatively subtle color variations. To address this issue, we propose a new paradigm that reformulates normal estimation as shading sequence estimation, where shading sequences are more sensitive to various geometric information. Building on this paradigm, we present RoSE, a method that leverages image-to-video generative models to predict shading sequences. The predicted shading sequences are then converted into normal maps by solving a simple ordinary least-squares problem. To enhance robustness and better handle complex objects, RoSE is trained on a synthetic dataset, MultiShade, with diverse shapes, materials, and light conditions. Experiments demonstrate that RoSE achieves state-of-the-art performance on real-world benchmark datasets for object-based monocular normal estimation.
Abstract:With the rising need for spatially grounded tasks such as Vision-Language Navigation/Action, allocentric perception capabilities in Vision-Language Models (VLMs) are receiving growing focus. However, VLMs remain brittle on allocentric spatial queries that require explicit perspective shifts, where the answer depends on reasoning in a target-centric frame rather than the observed camera view. Thus, we introduce Allocentric Perceiver, a training-free strategy that recovers metric 3D states from one or more images with off-the-shelf geometric experts, and then instantiates a query-conditioned allocentric reference frame aligned with the instruction's semantic intent. By deterministically transforming reconstructed geometry into the target frame and prompting the backbone VLM with structured, geometry-grounded representations, Allocentric Perceriver offloads mental rotation from implicit reasoning to explicit computation. We evaluate Allocentric Perciver across multiple backbone families on spatial reasoning benchmarks, observing consistent and substantial gains ($\sim$10%) on allocentric tasks while maintaining strong egocentric performance, and surpassing both spatial-perception-finetuned models and state-of-the-art open-source and proprietary models.
Abstract:Opportunities for medical students to gain practical experience in vaginal births are increasingly constrained by shortened clinical rotations, patient reluctance, and the unpredictable nature of labour. To alleviate clinicians' instructional burden and enhance trainees' learning efficiency, we introduce a mixed reality (MR) system for childbirth training that combines virtual guidance with tactile manikin interaction, thereby preserving authentic haptic feedback while enabling independent practice without continuous on-site expert supervision. The system extends the passthrough capability of commercial head-mounted displays (HMDs) by spatially calibrating an external RGB-D camera, allowing real-time visual integration of physical training objects. Building on this capability, we implement a coarse-to-fine localization pipeline that first aligns the maternal manikin with fiducial markers to define a delivery region and then registers the pre-scanned neonatal head within this area. This process enables spatially accurate overlay of virtual guiding hands near the manikin, allowing trainees to follow expert trajectories reinforced by haptic interaction. Experimental evaluations demonstrate that the system achieves accurate and stable manikin localization on a standalone headset, ensuring practical deployment without external computing resources. A large-scale user study involving 83 fourth-year medical students was subsequently conducted to compare MR-based and virtual reality (VR)-based childbirth training. Four senior obstetricians independently assessed performance using standardized criteria. Results showed that MR training achieved significantly higher scores in delivery, post-delivery, and overall task performance, and was consistently preferred by trainees over VR training.
Abstract:Multi-organ segmentation is a widely applied clinical routine and automated organ segmentation tools dramatically improve the pipeline of the radiologists. Recently, deep learning (DL) based segmentation models have shown the capacity to accomplish such a task. However, the training of the segmentation networks requires large amount of data with manual annotations, which is a major concern due to the data scarcity from clinic. Working with limited data is still common for researches on novel imaging modalities. To enhance the effectiveness of DL models trained with limited data, data augmentation (DA) is a crucial regularization technique. Traditional DA (TDA) strategies focus on basic intra-image operations, i.e. generating images with different orientations and intensity distributions. In contrast, the interimage and object-level DA operations are able to create new images from separate individuals. However, such DA strategies are not well explored on the task of multi-organ segmentation. In this paper, we investigated four possible inter-image DA strategies: CutMix, CarveMix, ObjectAug and AnatoMix, on two organ segmentation datasets. The result shows that CutMix, CarveMix and AnatoMix can improve the average dice score by 4.9, 2.0 and 1.9, compared with the state-of-the-art nnUNet without DA strategies. These results can be further improved by adding TDA strategies. It is revealed in our experiments that Cut-Mix is a robust but simple DA strategy to drive up the segmentation performance for multi-organ segmentation, even when CutMix produces intuitively 'wrong' images. Our implementation is publicly available for future benchmarks.
Abstract:3D style transfer refers to the artistic stylization of 3D assets based on reference style images. Recently, 3DGS-based stylization methods have drawn considerable attention, primarily due to their markedly enhanced training and rendering speeds. However, a vital challenge for 3D style transfer is to strike a balance between the content and the patterns and colors of the style. Although the existing methods strive to achieve relatively balanced outcomes, the fixed-output paradigm struggles to adapt to the diverse content-style balance requirements from different users. In this work, we introduce a creative intensity-tunable 3D style transfer paradigm, dubbed \textbf{Tune-Your-Style}, which allows users to flexibly adjust the style intensity injected into the scene to match their desired content-style balance, thus enhancing the customizability of 3D style transfer. To achieve this goal, we first introduce Gaussian neurons to explicitly model the style intensity and parameterize a learnable style tuner to achieve intensity-tunable style injection. To facilitate the learning of tunable stylization, we further propose the tunable stylization guidance, which obtains multi-view consistent stylized views from diffusion models through cross-view style alignment, and then employs a two-stage optimization strategy to provide stable and efficient guidance by modulating the balance between full-style guidance from the stylized views and zero-style guidance from the initial rendering. Extensive experiments demonstrate that our method not only delivers visually appealing results, but also exhibits flexible customizability for 3D style transfer. Project page is available at https://zhao-yian.github.io/TuneStyle.
Abstract:We introduce DeepSearchQA, a 900-prompt benchmark for evaluating agents on difficult multi-step information-seeking tasks across 17 different fields. Unlike traditional benchmarks that target single answer retrieval or broad-spectrum factuality, DeepSearchQA features a dataset of challenging, handcrafted tasks designed to evaluate an agent's ability to execute complex search plans to generate exhaustive answer lists. This shift in design explicitly tests three critical, yet under-evaluated capabilities: 1) systematic collation of fragmented information from disparate sources, 2) de-duplication and entity resolution to ensure precision, and 3) the ability to reason about stopping criteria within an open-ended search space. Each task is structured as a causal chain, where discovering information for one step is dependent on the successful completion of the previous one, stressing long-horizon planning and context retention. All tasks are grounded in the open web with objectively verifiable answer sets. Our comprehensive evaluation of state-of-the-art agent architectures reveals significant performance limitations: even the most advanced models struggle to balance high recall with precision. We observe distinct failure modes ranging from premature stopping (under-retrieval) to hedging behaviors, where agents cast an overly wide net of low-confidence answers to artificially boost recall. These findings highlight critical headroom in current agent designs and position DeepSearchQA as an essential diagnostic tool for driving future research toward more robust, deep-research capabilities.
Abstract:Large Language Model (LLM)-based mobile agents have made significant performance advancements. However, these agents often follow explicit user instructions while overlooking personalized needs, leading to significant limitations for real users, particularly without personalized context: (1) inability to interpret ambiguous instructions, (2) lack of learning from user interaction history, and (3) failure to handle personalized instructions. To alleviate the above challenges, we propose Me-Agent, a learnable and memorable personalized mobile agent. Specifically, Me-Agent incorporates a two-level user habit learning approach. At the prompt level, we design a user preference learning strategy enhanced with a Personal Reward Model to improve personalization performance. At the memory level, we design a Hierarchical Preference Memory, which stores users' long-term memory and app-specific memory in different level memory. To validate the personalization capabilities of mobile agents, we introduce User FingerTip, a new benchmark featuring numerous ambiguous instructions for daily life. Extensive experiments on User FingerTip and general benchmarks demonstrate that Me-Agent achieves state-of-the-art performance in personalization while maintaining competitive instruction execution performance.
Abstract:Real-time small object detection in Unmanned Aerial Vehicle (UAV) imagery remains challenging due to limited feature representation and ineffective multi-scale fusion. Existing methods underutilize frequency information and rely on static convolutional operations, which constrain the capacity to obtain rich feature representations and hinder the effective exploitation of deep semantic features. To address these issues, we propose EFSI-DETR, a novel detection framework that integrates efficient semantic feature enhancement with dynamic frequency-spatial guidance. EFSI-DETR comprises two main components: (1) a Dynamic Frequency-Spatial Unified Synergy Network (DyFusNet) that jointly exploits frequency and spatial cues for robust multi-scale feature fusion, (2) an Efficient Semantic Feature Concentrator (ESFC) that enables deep semantic extraction with minimal computational cost. Furthermore, a Fine-grained Feature Retention (FFR) strategy is adopted to incorporate spatially rich shallow features during fusion to preserve fine-grained details, crucial for small object detection in UAV imagery. Extensive experiments on VisDrone and CODrone benchmarks demonstrate that our EFSI-DETR achieves the state-of-the-art performance with real-time efficiency, yielding improvement of \textbf{1.6}\% and \textbf{5.8}\% in AP and AP$_{s}$ on VisDrone, while obtaining \textbf{188} FPS inference speed on a single RTX 4090 GPU.