Abstract:Node classification on static graphs has achieved significant success, but achieving accurate node classification on dynamic graphs where node topology, attributes, and labels change over time has not been well addressed. Existing methods based on RNNs and self-attention only aggregate features of the same node across different time slices, which cannot adequately address and capture the diverse dynamic changes in dynamic graphs. Therefore, we propose a novel model named Hypergraph-Based Multi-granularity Dynamic Graph Node Classification (HYDG). After obtaining basic node representations for each slice through a GNN backbone, HYDG models the representations of each node in the dynamic graph through two modules. The individual-level hypergraph captures the spatio-temporal node representations between individual nodes, while the group-level hypergraph captures the multi-granularity group temporal representations among nodes of the same class. Each hyperedge captures different temporal dependencies of varying lengths by connecting multiple nodes within specific time ranges. More accurate representations are obtained through weighted information propagation and aggregation by the hypergraph neural network. Extensive experiments on five real dynamic graph datasets using two GNN backbones demonstrate the superiority of our proposed framework.
Abstract:Recent advances in Large Language Models (LLMs) have demonstrated promising performance in sequential recommendation tasks, leveraging their superior language understanding capabilities. However, existing LLM-based recommendation approaches predominantly focus on modeling item-level co-occurrence patterns while failing to adequately capture user-level personalized preferences. This is problematic since even users who display similar behavioral patterns (e.g., clicking or purchasing similar items) may have fundamentally different underlying interests. To alleviate this problem, in this paper, we propose ULMRec, a framework that effectively integrates user personalized preferences into LLMs for sequential recommendation. Considering there has the semantic gap between item IDs and LLMs, we replace item IDs with their corresponding titles in user historical behaviors, enabling the model to capture the item semantics. For integrating the user personalized preference, we design two key components: (1) user indexing: a personalized user indexing mechanism that leverages vector quantization on user reviews and user IDs to generate meaningful and unique user representations, and (2) alignment tuning: an alignment-based tuning stage that employs comprehensive preference alignment tasks to enhance the model's capability in capturing personalized information. Through this design, ULMRec achieves deep integration of language semantics with user personalized preferences, facilitating effective adaptation to recommendation. Extensive experiments on two public datasets demonstrate that ULMRec significantly outperforms existing methods, validating the effectiveness of our approach.
Abstract:Domain generalization on graphs aims to develop models with robust generalization capabilities, ensuring effective performance on the testing set despite disparities between testing and training distributions. However, existing methods often rely on static encoders directly applied to the target domain, constraining its flexible adaptability. In contrast to conventional methodologies, which concentrate on developing specific generalized models, our framework, MLDGG, endeavors to achieve adaptable generalization across diverse domains by integrating cross-multi-domain meta-learning with structure learning and semantic identification. Initially, it introduces a generalized structure learner to mitigate the adverse effects of task-unrelated edges, enhancing the comprehensiveness of representations learned by Graph Neural Networks (GNNs) while capturing shared structural information across domains. Subsequently, a representation learner is designed to disentangle domain-invariant semantic and domain-specific variation information in node embedding by leveraging causal reasoning for semantic identification, further enhancing generalization. In the context of meta-learning, meta-parameters for both learners are optimized to facilitate knowledge transfer and enable effective adaptation to graphs through fine-tuning within the target domains, where target graphs are inaccessible during training. Our empirical results demonstrate that MLDGG surpasses baseline methods, showcasing its effectiveness in three different distribution shift settings.
Abstract:Out-of-distribution (OOD) detection poses a significant challenge for Graph Neural Networks (GNNs), particularly in open-world scenarios with varying distribution shifts. Most existing OOD detection methods on graphs primarily focus on identifying instances in test data domains caused by either semantic shifts (changes in data classes) or covariate shifts (changes in data features), while leaving the simultaneous occurrence of both distribution shifts under-explored. In this work, we address both types of shifts simultaneously and introduce a novel challenge for OOD detection on graphs: graph-level semantic OOD detection under covariate shift. In this scenario, variations between the training and test domains result from the concurrent presence of both covariate and semantic shifts, where only graphs associated with unknown classes are identified as OOD samples (OODs). To tackle this challenge, we propose a novel two-phase framework called Graph Disentangled Diffusion Augmentation (GDDA). The first phase focuses on disentangling graph representations into domain-invariant semantic factors and domain-specific style factors. In the second phase, we introduce a novel distribution-shift-controlled score-based generative diffusion model that generates latent factors outside the training semantic and style spaces. Additionally, auxiliary pseudo-in-distribution (InD) and pseudo-OOD graph representations are employed to enhance the effectiveness of the energy-based semantic OOD detector. Extensive empirical studies on three benchmark datasets demonstrate that our approach outperforms state-of-the-art baselines.
Abstract:Achieving the generalization of an invariant classifier from training domains to shifted test domains while simultaneously considering model fairness is a substantial and complex challenge in machine learning. Existing methods address the problem of fairness-aware domain generalization, focusing on either covariate shift or correlation shift, but rarely consider both at the same time. In this paper, we introduce a novel approach that focuses on learning a fairness-aware domain-invariant predictor within a framework addressing both covariate and correlation shifts simultaneously, ensuring its generalization to unknown test domains inaccessible during training. In our approach, data are first disentangled into content and style factors in latent spaces. Furthermore, fairness-aware domain-invariant content representations can be learned by mitigating sensitive information and retaining as much other information as possible. Extensive empirical studies on benchmark datasets demonstrate that our approach surpasses state-of-the-art methods with respect to model accuracy as well as both group and individual fairness.
Abstract:Product review generation is an important task in recommender systems, which could provide explanation and persuasiveness for the recommendation. Recently, Large Language Models (LLMs, e.g., ChatGPT) have shown superior text modeling and generating ability, which could be applied in review generation. However, directly applying the LLMs for generating reviews might be troubled by the ``polite'' phenomenon of the LLMs and could not generate personalized reviews (e.g., negative reviews). In this paper, we propose Review-LLM that customizes LLMs for personalized review generation. Firstly, we construct the prompt input by aggregating user historical behaviors, which include corresponding item titles and reviews. This enables the LLMs to capture user interest features and review writing style. Secondly, we incorporate ratings as indicators of satisfaction into the prompt, which could further improve the model's understanding of user preferences and the sentiment tendency control of generated reviews. Finally, we feed the prompt text into LLMs, and use Supervised Fine-Tuning (SFT) to make the model generate personalized reviews for the given user and target item. Experimental results on the real-world dataset show that our fine-tuned model could achieve better review generation performance than existing close-source LLMs.
Abstract:The fairness of AI decision-making has garnered increasing attention, leading to the proposal of numerous fairness algorithms. In this paper, we aim not to address this issue by directly introducing fair learning algorithms, but rather by generating entirely new, fair synthetic data from biased datasets for use in any downstream tasks. Additionally, the distribution of test data may differ from that of the training set, potentially impacting the performance of the generated synthetic data in downstream tasks. To address these two challenges, we propose a diffusion model-based framework, FADM: Fairness-Aware Diffusion with Meta-training. FADM introduces two types of gradient induction during the sampling phase of the diffusion model: one to ensure that the generated samples belong to the desired target categories, and another to make the sensitive attributes of the generated samples difficult to classify into any specific sensitive attribute category. To overcome data distribution shifts in the test environment, we train the diffusion model and the two classifiers used for induction within a meta-learning framework. Compared to other baselines, FADM allows for flexible control over the categories of the generated samples and exhibits superior generalization capability. Experiments on real datasets demonstrate that FADM achieves better accuracy and optimal fairness in downstream tasks.
Abstract:Influence maximization (IM) is the problem of identifying a limited number of initial influential users within a social network to maximize the number of influenced users. However, previous research has mostly focused on individual information propagation, neglecting the simultaneous and interactive dissemination of multiple information items. In reality, when users encounter a piece of information, such as a smartphone product, they often associate it with related products in their minds, such as earphones or computers from the same brand. Additionally, information platforms frequently recommend related content to users, amplifying this cascading effect and leading to multiplex influence diffusion. This paper first formulates the Multiplex Influence Maximization (Multi-IM) problem using multiplex diffusion models with an information association mechanism. In this problem, the seed set is a combination of influential users and information. To effectively manage the combinatorial complexity, we propose Graph Bayesian Optimization for Multi-IM (GBIM). The multiplex diffusion process is thoroughly investigated using a highly effective global kernelized attention message-passing module. This module, in conjunction with Bayesian linear regression (BLR), produces a scalable surrogate model. A data acquisition module incorporating the exploration-exploitation trade-off is developed to optimize the seed set further. Extensive experiments on synthetic and real-world datasets have proven our proposed framework effective. The code is available at https://github.com/zirui-yuan/GBIM.
Abstract:Traditional machine learning methods heavily rely on the independent and identically distribution assumption, which imposes limitations when the test distribution deviates from the training distribution. To address this crucial issue, out-of-distribution (OOD) generalization, which aims to achieve satisfactory generalization performance when faced with unknown distribution shifts, has made a significant process. However, the OOD method for graph-structured data currently lacks clarity and remains relatively unexplored due to two primary challenges. Firstly, distribution shifts on graphs often occur simultaneously on node attributes and graph topology. Secondly, capturing invariant information amidst diverse distribution shifts proves to be a formidable challenge. To overcome these obstacles, in this paper, we introduce a novel framework, namely Graph Learning Invariant Domain genERation (GLIDER). The goal is to (1) diversify variations across domains by modeling the potential seen or unseen variations of attribute distribution and topological structure and (2) minimize the discrepancy of the variation in a representation space where the target is to predict semantic labels. Extensive experiment results indicate that our model outperforms baseline methods on node-level OOD generalization across domains in distribution shift on node features and topological structures simultaneously.
Abstract:Supervised fairness-aware machine learning under distribution shifts is an emerging field that addresses the challenge of maintaining equitable and unbiased predictions when faced with changes in data distributions from source to target domains. In real-world applications, machine learning models are often trained on a specific dataset but deployed in environments where the data distribution may shift over time due to various factors. This shift can lead to unfair predictions, disproportionately affecting certain groups characterized by sensitive attributes, such as race and gender. In this survey, we provide a summary of various types of distribution shifts and comprehensively investigate existing methods based on these shifts, highlighting six commonly used approaches in the literature. Additionally, this survey lists publicly available datasets and evaluation metrics for empirical studies. We further explore the interconnection with related research fields, discuss the significant challenges, and identify potential directions for future studies.