The fairness of AI decision-making has garnered increasing attention, leading to the proposal of numerous fairness algorithms. In this paper, we aim not to address this issue by directly introducing fair learning algorithms, but rather by generating entirely new, fair synthetic data from biased datasets for use in any downstream tasks. Additionally, the distribution of test data may differ from that of the training set, potentially impacting the performance of the generated synthetic data in downstream tasks. To address these two challenges, we propose a diffusion model-based framework, FADM: Fairness-Aware Diffusion with Meta-training. FADM introduces two types of gradient induction during the sampling phase of the diffusion model: one to ensure that the generated samples belong to the desired target categories, and another to make the sensitive attributes of the generated samples difficult to classify into any specific sensitive attribute category. To overcome data distribution shifts in the test environment, we train the diffusion model and the two classifiers used for induction within a meta-learning framework. Compared to other baselines, FADM allows for flexible control over the categories of the generated samples and exhibits superior generalization capability. Experiments on real datasets demonstrate that FADM achieves better accuracy and optimal fairness in downstream tasks.