Abstract:Open-set domain generalization addresses a real-world challenge: training a model to generalize across unseen domains (domain generalization) while also detecting samples from unknown classes not encountered during training (open-set recognition). However, most existing approaches tackle these issues separately, limiting their practical applicability. To overcome this limitation, we propose a unified framework for open-set domain generalization by introducing Feature-space Semantic Invariance (FSI). FSI maintains semantic consistency across different domains within the feature space, enabling more accurate detection of OOD instances in unseen domains. Additionally, we adopt a generative model to produce synthetic data with novel domain styles or class labels, enhancing model robustness. Initial experiments show that our method improves AUROC by 9.1% to 18.9% on ColoredMNIST, while also significantly increasing in-distribution classification accuracy.
Abstract:We introduce FinDVer, a comprehensive benchmark specifically designed to evaluate the explainable claim verification capabilities of LLMs in the context of understanding and analyzing long, hybrid-content financial documents. FinDVer contains 2,400 expert-annotated examples, divided into three subsets: information extraction, numerical reasoning, and knowledge-intensive reasoning, each addressing common scenarios encountered in real-world financial contexts. We assess a broad spectrum of LLMs under long-context and RAG settings. Our results show that even the current best-performing system, GPT-4o, still lags behind human experts. We further provide in-depth analysis on long-context and RAG setting, Chain-of-Thought reasoning, and model reasoning errors, offering insights to drive future advancements. We believe that FinDVer can serve as a valuable benchmark for evaluating LLMs in claim verification over complex, expert-domain documents.
Abstract:The emerging in-context learning (ICL) ability of large language models (LLMs) has prompted their use for predictive tasks in various domains with different types of data facilitated by serialization methods. However, with increasing applications in high-stakes domains, it has been shown that LLMs can inherit social bias and discrimination from their pre-training data. In this work, we investigate this inherent bias in LLMs during in-context learning with tabular data. We focus on an optimal demonstration selection approach that utilizes latent concept variables for resource-efficient task adaptation. We design data augmentation strategies that reduce correlation between predictive outcomes and sensitive variables helping to promote fairness during latent concept learning. We utilize the learned concept and select demonstrations from a training dataset to obtain fair predictions during inference while maintaining model utility. The latent concept variable is learned using a smaller internal LLM and the selected demonstrations can be used for inference with larger external LLMs. We empirically verify that the fair latent variable approach improves fairness results on tabular datasets compared to multiple heuristic demonstration selection methods.
Abstract:Generalizing to out-of-distribution data while being aware of model fairness is a significant and challenging problem in meta-learning. The goal of this problem is to find a set of fairness-aware invariant parameters of classifier that is trained using data drawn from a family of related training domains with distribution shift on non-sensitive features as well as different levels of dependence between model predictions and sensitive features so that the classifier can achieve good generalization performance on unknown but distinct test domains. To tackle this challenge, existing state-of-the-art methods either address the domain generalization problem but completely ignore learning with fairness or solely specify shifted domains with various fairness levels. This paper introduces an approach to fairness-aware meta-learning that significantly enhances domain generalization capabilities. Our framework, Fairness-Enhanced Meta-Learning for Domain Generalization (FEED), disentangles latent data representations into content, style, and sensitive vectors. This disentanglement facilitates the robust generalization of machine learning models across diverse domains while adhering to fairness constraints. Unlike traditional methods that focus primarily on domain invariance or sensitivity to shifts, our model integrates a fairness-aware invariance criterion directly into the meta-learning process. This integration ensures that the learned parameters uphold fairness consistently, even when domain characteristics vary widely. We validate our approach through extensive experiments across multiple benchmarks, demonstrating not only superior performance in maintaining high accuracy and fairness but also significant improvements over existing state-of-the-art methods in domain generalization tasks.
Abstract:Real-world machine learning applications often face simultaneous covariate and semantic shifts, challenging traditional domain generalization and out-of-distribution (OOD) detection methods. We introduce Meta-learned Across Domain Out-of-distribution Detection (MADOD), a novel framework designed to address both shifts concurrently. MADOD leverages meta-learning and G-invariance to enhance model generalizability and OOD detection in unseen domains. Our key innovation lies in task construction: we randomly designate in-distribution classes as pseudo-OODs within each meta-learning task, simulating OOD scenarios using existing data. This approach, combined with energy-based regularization, enables the learning of robust, domain-invariant features while calibrating decision boundaries for effective OOD detection. Operating in a test domain-agnostic setting, MADOD eliminates the need for adaptation during inference, making it suitable for scenarios where test data is unavailable. Extensive experiments on real-world and synthetic datasets demonstrate MADOD's superior performance in semantic OOD detection across unseen domains, achieving an AUPR improvement of 8.48% to 20.81%, while maintaining competitive in-distribution classification accuracy, representing a significant advancement in handling both covariate and semantic shifts.
Abstract:3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness for novel view synthesis (NVS). However, the 3DGS model tends to overfit when trained with sparse posed views, limiting its generalization capacity for broader pose variations. In this paper, we alleviate the overfitting problem by introducing a self-ensembling Gaussian Splatting (SE-GS) approach. We present two Gaussian Splatting models named the $\mathbf{\Sigma}$-model and the $\mathbf{\Delta}$-model. The $\mathbf{\Sigma}$-model serves as the primary model that generates novel-view images during inference. At the training stage, the $\mathbf{\Sigma}$-model is guided away from specific local optima by an uncertainty-aware perturbing strategy. We dynamically perturb the $\mathbf{\Delta}$-model based on the uncertainties of novel-view renderings across different training steps, resulting in diverse temporal models sampled from the Gaussian parameter space without additional training costs. The geometry of the $\mathbf{\Sigma}$-model is regularized by penalizing discrepancies between the $\mathbf{\Sigma}$-model and the temporal samples. Therefore, our SE-GS conducts an effective and efficient regularization across a large number of Gaussian Splatting models, resulting in a robust ensemble, the $\mathbf{\Sigma}$-model. Experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets show that our approach improves NVS quality with few-shot training views, outperforming existing state-of-the-art methods. The code is released at https://github.com/sailor-z/SE-GS.
Abstract:Out-of-distribution (OOD) detection poses a significant challenge for Graph Neural Networks (GNNs), particularly in open-world scenarios with varying distribution shifts. Most existing OOD detection methods on graphs primarily focus on identifying instances in test data domains caused by either semantic shifts (changes in data classes) or covariate shifts (changes in data features), while leaving the simultaneous occurrence of both distribution shifts under-explored. In this work, we address both types of shifts simultaneously and introduce a novel challenge for OOD detection on graphs: graph-level semantic OOD detection under covariate shift. In this scenario, variations between the training and test domains result from the concurrent presence of both covariate and semantic shifts, where only graphs associated with unknown classes are identified as OOD samples (OODs). To tackle this challenge, we propose a novel two-phase framework called Graph Disentangled Diffusion Augmentation (GDDA). The first phase focuses on disentangling graph representations into domain-invariant semantic factors and domain-specific style factors. In the second phase, we introduce a novel distribution-shift-controlled score-based generative diffusion model that generates latent factors outside the training semantic and style spaces. Additionally, auxiliary pseudo-in-distribution (InD) and pseudo-OOD graph representations are employed to enhance the effectiveness of the energy-based semantic OOD detector. Extensive empirical studies on three benchmark datasets demonstrate that our approach outperforms state-of-the-art baselines.
Abstract:In the field of medical image analysis, image registration is a crucial technique. Despite the numerous registration models that have been proposed, existing methods still fall short in terms of accuracy and interpretability. In this paper, we present MsMorph, a deep learning-based image registration framework aimed at mimicking the manual process of registering image pairs to achieve more similar deformations, where the registered image pairs exhibit consistency or similarity in features. By extracting the feature differences between image pairs across various as-pects using gradients, the framework decodes semantic information at different scales and continuously compen-sates for the predicted deformation field, driving the optimization of parameters to significantly improve registration accuracy. The proposed method simulates the manual approach to registration, focusing on different regions of the image pairs and their neighborhoods to predict the deformation field between the two images, which provides strong interpretability. We compared several existing registration methods on two public brain MRI datasets, including LPBA and Mindboggle. The experimental results show that our method consistently outperforms state of the art in terms of metrics such as Dice score, Hausdorff distance, average symmetric surface distance, and non-Jacobian. The source code is publicly available at https://github.com/GaodengFan/MsMorph
Abstract:Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia, significantly impacting cost, mortality, and burden worldwide. The advent of high-throughput omics technologies, such as genomics, transcriptomics, proteomics, and epigenomics, has revolutionized the molecular understanding of AD. Conventional AI approaches typically require the completion of all omics data at the outset to achieve optimal AD diagnosis, which are inefficient and may be unnecessary. To reduce the clinical cost and improve the accuracy of AD diagnosis using multi-omics data, we propose a novel staged graph convolutional network with uncertainty quantification (SGUQ). SGUQ begins with mRNA and progressively incorporates DNA methylation and miRNA data only when necessary, reducing overall costs and exposure to harmful tests. Experimental results indicate that 46.23% of the samples can be reliably predicted using only single-modal omics data (mRNA), while an additional 16.04% of the samples can achieve reliable predictions when combining two omics data types (mRNA + DNA methylation). In addition, the proposed staged SGUQ achieved an accuracy of 0.858 on ROSMAP dataset, which outperformed existing methods significantly. The proposed SGUQ can not only be applied to AD diagnosis using multi-omics data but also has the potential for clinical decision-making using multi-viewed data. Our implementation is publicly available at https://github.com/chenzhao2023/multiomicsuncertainty.
Abstract:Text-to-SQL parsing and end-to-end question answering (E2E TQA) are two main approaches for Table-based Question Answering task. Despite success on multiple benchmarks, they have yet to be compared and their synergy remains unexplored. In this paper, we identify different strengths and weaknesses through evaluating state-of-the-art models on benchmark datasets: Text-to-SQL demonstrates superiority in handling questions involving arithmetic operations and long tables; E2E TQA excels in addressing ambiguous questions, non-standard table schema, and complex table contents. To combine both strengths, we propose a Synergistic Table-based Question Answering approach that integrate different models via answer selection, which is agnostic to any model types. Further experiments validate that ensembling models by either feature-based or LLM-based answer selector significantly improves the performance over individual models.