Abstract:Idiomatic expressions are an integral part of human languages, often used to express complex ideas in compressed or conventional ways (e.g. eager beaver as a keen and enthusiastic person). However, their interpretations may not be straightforwardly linked to the meanings of their individual components in isolation and this may have an impact for compositional approaches. In this paper, we investigate to what extent word representation models are able to go beyond compositional word combinations and capture multiword expression idiomaticity and some of the expected properties related to idiomatic meanings. We focus on noun compounds of varying levels of idiomaticity in two languages (English and Portuguese), presenting a dataset of minimal pairs containing human idiomaticity judgments for each noun compound at both type and token levels, their paraphrases and their occurrences in naturalistic and sense-neutral contexts, totalling 32,200 sentences. We propose this set of minimal pairs for evaluating how well a model captures idiomatic meanings, and define a set of fine-grained metrics of Affinity and Scaled Similarity, to determine how sensitive the models are to perturbations that may lead to changes in idiomaticity. The results obtained with a variety of representative and widely used models indicate that, despite superficial indications to the contrary in the form of high similarities, idiomaticity is not yet accurately represented in current models. Moreover, the performance of models with different levels of contextualisation suggests that their ability to capture context is not yet able to go beyond more superficial lexical clues provided by the words and to actually incorporate the relevant semantic clues needed for idiomaticity.
Abstract:Self-improvement methods enable large language models (LLMs) to generate solutions themselves and iteratively train on filtered, high-quality rationales. This process proves effective and reduces the reliance on human supervision in LLMs' reasoning, but the performance soon plateaus. We delve into the process and find that models tend to over-sample on easy queries and under-sample on queries they have yet to master. As iterations proceed, this imbalance in sampling is exacerbated, leading to a long-tail distribution where solutions to difficult queries almost diminish. This phenomenon limits the performance gain of self-improving models. A straightforward solution is brute-force sampling to balance the distribution, which significantly raises computational costs. In this paper, we introduce Guided Self-Improvement (GSI), a strategy aimed at improving the efficiency of sampling challenging heavy-tailed data. It leverages Socratic-style guidance signals to help LLM reasoning with complex queries, reducing the exploration effort and minimizing computational overhead. Experiments on four models across diverse mathematical tasks show that GSI strikes a balance between performance and efficiency, while also being effective on held-out tasks.
Abstract:Solving complex chart Q&A tasks requires advanced visual reasoning abilities in multimodal large language models (MLLMs). Recent studies highlight that these abilities consist of two main parts: recognizing key information from visual inputs and conducting reasoning over it. Thus, a promising approach to enhance MLLMs is to construct relevant training data focusing on the two aspects. However, collecting and annotating complex charts and questions is costly and time-consuming, and ensuring the quality of annotated answers remains a challenge. In this paper, we propose Code-as-Intermediary Translation (CIT), a cost-effective, efficient and easily scalable data synthesis method for distilling visual reasoning abilities from LLMs to MLLMs. The code serves as an intermediary that translates visual chart representations into textual representations, enabling LLMs to understand cross-modal information. Specifically, we employ text-based synthesizing techniques to construct chart-plotting code and produce ReachQA, a dataset containing 3k reasoning-intensive charts and 20k Q&A pairs to enhance both recognition and reasoning abilities. Experiments show that when fine-tuned with our data, models not only perform well on chart-related benchmarks, but also demonstrate improved multimodal reasoning abilities on general mathematical benchmarks like MathVista. The code and dataset are publicly available at https://github.com/hewei2001/ReachQA.
Abstract:Vision-language large models have achieved remarkable success in various multi-modal tasks, yet applying them to video understanding remains challenging due to the inherent complexity and computational demands of video data. While training-based video-LLMs deliver high performance, they often require substantial resources for training and inference. Conversely, training-free approaches offer a more efficient alternative by adapting pre-trained image-LLMs models for video tasks without additional training, but they face inference efficiency bottlenecks due to the large number of visual tokens generated from video frames. In this work, we present a novel prompt-guided visual perception framework (abbreviated as \emph{Free Video-LLM}) for efficient inference of training-free video LLMs. The proposed framework decouples spatial-temporal dimension and performs temporal frame sampling and spatial RoI cropping respectively based on task-specific prompts. Our method effectively reduces the number of visual tokens while maintaining high performance across multiple video question-answering benchmarks. Extensive experiments demonstrate that our approach achieves competitive results with significantly fewer tokens, offering an optimal trade-off between accuracy and computational efficiency compared to state-of-the-art video LLMs. The code will be available at \url{https://github.com/contrastive/FreeVideoLLM}.
Abstract:Breast cancer presents a significant healthcare challenge globally, demanding precise diagnostics and effective treatment strategies, where histopathological examination of Hematoxylin and Eosin (H&E) stained tissue sections plays a central role. Despite its importance, evaluating specific biomarkers like Human Epidermal Growth Factor Receptor 2 (HER2) for personalized treatment remains constrained by the resource-intensive nature of Immunohistochemistry (IHC). Recent strides in deep learning, particularly in image-to-image translation, offer promise in synthesizing IHC-HER2 slides from H\&E stained slides. However, existing methodologies encounter challenges, including managing multiple magnifications in pathology images and insufficient focus on crucial information during translation. To address these issues, we propose a novel model integrating attention mechanisms and multi-magnification information processing. Our model employs a multi-magnification processing strategy to extract and utilize information from various magnifications within pathology images, facilitating robust image translation. Additionally, an attention module within the generative network prioritizes critical information for image distribution translation while minimizing less pertinent details. Rigorous testing on a publicly available breast cancer dataset demonstrates superior performance compared to existing methods, establishing our model as a state-of-the-art solution in advancing pathology image translation from H&E to IHC staining.
Abstract:Large language models (LLMs) have achieved remarkable performance on various NLP tasks, yet their potential in more challenging and domain-specific task, such as finance, has not been fully explored. In this paper, we present CFinBench: a meticulously crafted, the most comprehensive evaluation benchmark to date, for assessing the financial knowledge of LLMs under Chinese context. In practice, to better align with the career trajectory of Chinese financial practitioners, we build a systematic evaluation from 4 first-level categories: (1) Financial Subject: whether LLMs can memorize the necessary basic knowledge of financial subjects, such as economics, statistics and auditing. (2) Financial Qualification: whether LLMs can obtain the needed financial qualified certifications, such as certified public accountant, securities qualification and banking qualification. (3) Financial Practice: whether LLMs can fulfill the practical financial jobs, such as tax consultant, junior accountant and securities analyst. (4) Financial Law: whether LLMs can meet the requirement of financial laws and regulations, such as tax law, insurance law and economic law. CFinBench comprises 99,100 questions spanning 43 second-level categories with 3 question types: single-choice, multiple-choice and judgment. We conduct extensive experiments of 50 representative LLMs with various model size on CFinBench. The results show that GPT4 and some Chinese-oriented models lead the benchmark, with the highest average accuracy being 60.16%, highlighting the challenge presented by CFinBench. The dataset and evaluation code are available at https://cfinbench.github.io/.
Abstract:Accurately modeling idiomatic or non-compositional language has been a longstanding challenge in Natural Language Processing (NLP). This is partly because these expressions do not derive their meanings solely from their constituent words, but also due to the scarcity of relevant data resources, and their impact on the performance of downstream tasks such as machine translation and simplification. In this paper we propose an approach to model idiomaticity effectively using a triplet loss that incorporates the asymmetric contribution of components words to an idiomatic meaning for training language models by using adaptive contrastive learning and resampling miners to build an idiomatic-aware learning objective. Our proposed method is evaluated on a SemEval challenge and outperforms previous alternatives significantly in many metrics.
Abstract:Building generalist agents that can handle diverse tasks and evolve themselves across different environments is a long-term goal in the AI community. Large language models (LLMs) are considered a promising foundation to build such agents due to their generalized capabilities. Current approaches either have LLM-based agents imitate expert-provided trajectories step-by-step, requiring human supervision, which is hard to scale and limits environmental exploration; or they let agents explore and learn in isolated environments, resulting in specialist agents with limited generalization. In this paper, we take the first step towards building generally-capable LLM-based agents with self-evolution ability. We identify a trinity of ingredients: 1) diverse environments for agent exploration and learning, 2) a trajectory set to equip agents with basic capabilities and prior knowledge, and 3) an effective and scalable evolution method. We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration. AgentGym also includes a database with expanded instructions, a benchmark suite, and high-quality trajectories across environments. Next, we propose a novel method, AgentEvol, to investigate the potential of agent self-evolution beyond previously seen data across tasks and environments. Experimental results show that the evolved agents can achieve results comparable to SOTA models. We release the AgentGym suite, including the platform, dataset, benchmark, checkpoints, and algorithm implementations. The AgentGym suite is available on https://github.com/WooooDyy/AgentGym.
Abstract:Buildings, as fundamental man-made structures in urban environments, serve as crucial indicators for understanding various city function zones. Rapid urbanization has raised an urgent need for efficiently surveying building footprints and functions. In this study, we proposed a semi-supervised framework to identify every building's function in large-scale urban areas with multi-modality remote-sensing data. In detail, optical images, building height, and nighttime-light data are collected to describe the morphological attributes of buildings. Then, the area of interest (AOI) and building masks from the volunteered geographic information (VGI) data are collected to form sparsely labeled samples. Furthermore, the multi-modality data and weak labels are utilized to train a segmentation model with a semi-supervised strategy. Finally, results are evaluated by 20,000 validation points and statistical survey reports from the government. The evaluations reveal that the produced function maps achieve an OA of 82% and Kappa of 71% among 1,616,796 buildings in Shanghai, China. This study has the potential to support large-scale urban management and sustainable urban development. All collected data and produced maps are open access at https://github.com/LiZhuoHong/BuildingMap.
Abstract:Large language models (LLMs) have shown promising abilities of in-context learning (ICL), adapting swiftly to new tasks with only few-shot demonstrations. However, current few-shot methods heavily depend on high-quality, query-specific demos, which are often lacking. When faced with out-of-demonstration (OOD) queries, methods that rely on hand-crafted demos or external retrievers might fail. To bridge the gap between limited demos and OOD queries, we propose Self-Demos, a novel prompting method that elicits the inherent generalizability in LLMs by query-aware demo generation. The generated demos strategically interpolate between existing demos and the given query, transforming the query from OOD to ID. To evaluate the effectiveness of our approach, we manually constructed OOD-Toolset, a dataset in the tool-using scenario with over 300 real-world APIs and 1000 instances, each consisting of three tool-use cases as demos and an OOD query. Thorough experiments on our dataset and two public math benchmarks have shown that our method can outperform state-of-the-art baselines in the OOD setting. Moreover, we conduct a range of analyses to validate Self-Demos's generalization and provide more insights.