Abstract:Hyperspectral image (HSI) fusion is an efficient technique that combines low-resolution HSI (LR-HSI) and high-resolution multispectral images (HR-MSI) to generate high-resolution HSI (HR-HSI). Existing supervised learning methods (SLMs) can yield promising results when test data degradation matches the training ones, but they face challenges in generalizing to unknown degradations. To unleash the potential and generalization ability of SLMs, we propose a novel self-supervised unknown-to-known degradation transformation framework (U2K) for blind HSI fusion, which adaptively transforms unknown degradation into the same type of degradation as those handled by pre-trained SLMs. Specifically, the proposed U2K framework consists of: (1) spatial and spectral Degradation Wrapping (DW) modules that map HR-HSI to unknown degraded HR-MSI and LR-HSI, and (2) Degradation Transformation (DT) modules that convert these wrapped data into predefined degradation patterns. The transformed HR-MSI and LR-HSI pairs are then processed by a pre-trained network to reconstruct the target HR-HSI. We train the U2K framework in a self-supervised manner using consistency loss and greedy alternating optimization, significantly improving the flexibility of blind HSI fusion. Extensive experiments confirm the effectiveness of our proposed U2K framework in boosting the adaptability of five existing SLMs under various degradation settings and surpassing state-of-the-art blind methods.
Abstract:Background. Systematic reviews in comparative effectiveness research require timely evidence synthesis. Preprints accelerate knowledge dissemination but vary in quality, posing challenges for systematic reviews. Methods. We propose AutoConfidence (automated confidence assessment), an advanced framework for predicting preprint publication, which reduces reliance on manual curation and expands the range of predictors, including three key advancements: (1) automated data extraction using natural language processing techniques, (2) semantic embeddings of titles and abstracts, and (3) large language model (LLM)-driven evaluation scores. Additionally, we employed two prediction models: a random forest classifier for binary outcome and a survival cure model that predicts both binary outcome and publication risk over time. Results. The random forest classifier achieved AUROC 0.692 with LLM-driven scores, improving to 0.733 with semantic embeddings and 0.747 with article usage metrics. The survival cure model reached AUROC 0.716 with LLM-driven scores, improving to 0.731 with semantic embeddings. For publication risk prediction, it achieved a concordance index of 0.658, increasing to 0.667 with semantic embeddings. Conclusion. Our study advances the framework for preprint publication prediction through automated data extraction and multiple feature integration. By combining semantic embeddings with LLM-driven evaluations, AutoConfidence enhances predictive performance while reducing manual annotation burden. The framework has the potential to facilitate systematic incorporation of preprint articles in evidence-based medicine, supporting researchers in more effective evaluation and utilization of preprint resources.
Abstract:As data marketplaces become increasingly central to the digital economy, it is crucial to design efficient pricing mechanisms that optimize revenue while ensuring fair and adaptive pricing. We introduce the Maximum Auction-to-Posted Price (MAPP) mechanism, a novel two-stage approach that first estimates the bidders' value distribution through auctions and then determines the optimal posted price based on the learned distribution. We establish that MAPP is individually rational and incentive-compatible, ensuring truthful bidding while balancing revenue maximization with minimal price discrimination. MAPP achieves a regret of $O_p(n^{-1})$ when incorporating historical bid data, where $n$ is the number of bids in the current round. It outperforms existing methods while imposing weaker distributional assumptions. For sequential dataset sales over $T$ rounds, we propose an online MAPP mechanism that dynamically adjusts pricing across datasets with varying value distributions. Our approach achieves no-regret learning, with the average cumulative regret converging at a rate of $O_p(T^{-1/2}(\log T)^2)$. We validate the effectiveness of MAPP through simulations and real-world data from the FCC AWS-3 spectrum auction.
Abstract:Hyperspectral images (HSIs) often suffer from diverse and unknown degradations during imaging, leading to severe spectral and spatial distortions. Existing HSI restoration methods typically rely on specific degradation assumptions, limiting their effectiveness in complex scenarios. In this paper, we propose MP-HSIR, a novel multi-prompt framework that effectively integrates spectral, textual, and visual prompts to achieve universal HSI restoration across diverse degradation types and intensities. Specifically, we develop a prompt-guided spatial-spectral transformer, which incorporates spatial self-attention and a prompt-guided dual-branch spectral self-attention. Since degradations affect spectral features differently, we introduce spectral prompts in the local spectral branch to provide universal low-rank spectral patterns as prior knowledge for enhancing spectral reconstruction. Furthermore, the text-visual synergistic prompt fuses high-level semantic representations with fine-grained visual features to encode degradation information, thereby guiding the restoration process. Extensive experiments on 9 HSI restoration tasks, including all-in-one scenarios, generalization tests, and real-world cases, demonstrate that MP-HSIR not only consistently outperforms existing all-in-one methods but also surpasses state-of-the-art task-specific approaches across multiple tasks. The code and models will be released at https://github.com/ZhehuiWu/MP-HSIR.
Abstract:We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
Abstract:To achieve ubiquitous connectivity in next-generation networks through aerospace communications while maintaining high data rates, Terahertz (THz) band communications (0.1-10 THz) with large continuous bandwidths are considered a promising candidate technology. However, key enabling techniques and practical implementations of THz communications for aerospace applications remain limited. In this paper, the wireless channel characteristics, enabling communication techniques, and networking strategies for THz aerospace communications are investigated, aiming to assess their feasibility and encourage future research efforts toward system realization. Specifically, the wireless channel characteristics across various altitudes and scenarios are first analyzed, focusing on modeling the interaction between the THz wave and the external environment, from ground to outer space. Next, key enabling communication technologies, including multiple-input multiple-output (MIMO) technique, beam alignment and tracking, integrated communication and radar sensing (ICARS), and resource allocation for networking are discussed. Finally, the existing challenges and possible future directions are summarized and discussed.
Abstract:Public health researchers are increasingly interested in using social media data to study health-related behaviors, but manually labeling this data can be labor-intensive and costly. This study explores whether zero-shot labeling using large language models (LLMs) can match or surpass conventional crowd-sourced annotation for Twitter posts related to sleep disorders, physical activity, and sedentary behavior. Multiple annotation pipelines were designed to compare labels produced by domain experts, crowd workers, and LLM-driven approaches under varied prompt-engineering strategies. Our findings indicate that LLMs can rival human performance in straightforward classification tasks and significantly reduce labeling time, yet their accuracy diminishes for tasks requiring more nuanced domain knowledge. These results clarify the trade-offs between automated scalability and human expertise, demonstrating conditions under which LLM-based labeling can be efficiently integrated into public health research without undermining label quality.
Abstract:Low altitude economy (LAE) holds immense potential to drive urban development across various sectors. However, LAE also faces challenges in data collection and processing efficiency, flight control precision, and network performance. The challenges could be solved by realizing an integration of sensing, communications, computation, and control (ISC3) for LAE. In this regard, embodied artificial intelligence (EAI), with its unique perception, planning, and decision-making capabilities, offers a promising solution to realize ISC3. Specifically, this paper investigates an application of EAI into ISC3 to support LAE, exploring potential research focuses, solutions, and case study. We begin by outlining rationales and benefits of introducing EAI into LAE, followed by reviewing research directions and solutions for EAI in ISC3. We then propose a framework of an EAI-enabled ISC3 for LAE. The framework's effectiveness is evaluated through a case study of express delivery utilizing an EAI-enabled UAV. Finally, we discuss several future research directions for advancing EAI-enabled LAE.
Abstract:Despite the recent advancement in Retrieval-Augmented Generation (RAG) systems, most retrieval methodologies are often developed for factual retrieval, which assumes query and positive documents are semantically similar. In this paper, we instead propose and study a more challenging type of retrieval task, called hidden rationale retrieval, in which query and document are not similar but can be inferred by reasoning chains, logic relationships, or empirical experiences. To address such problems, an instruction-tuned Large language model (LLM) with a cross-encoder architecture could be a reasonable choice. To further strengthen pioneering LLM-based retrievers, we design a special instruction that transforms the retrieval task into a generative task by prompting LLM to answer a binary-choice question. The model can be fine-tuned with direct preference optimization (DPO). The framework is also optimized for computational efficiency with no performance degradation. We name this retrieval framework by RaHoRe and verify its zero-shot and fine-tuned performance superiority on Emotional Support Conversation (ESC), compared with previous retrieval works. Our study suggests the potential to employ LLM as a foundation for a wider scope of retrieval tasks. Our codes, models, and datasets are available on https://github.com/flyfree5/LaHoRe.
Abstract:This paper targets the challenge of real-time LiDAR re-simulation in dynamic driving scenarios. Recent approaches utilize neural radiance fields combined with the physical modeling of LiDAR sensors to achieve high-fidelity re-simulation results. Unfortunately, these methods face limitations due to high computational demands in large-scale scenes and cannot perform real-time LiDAR rendering. To overcome these constraints, we propose LiDAR-RT, a novel framework that supports real-time, physically accurate LiDAR re-simulation for driving scenes. Our primary contribution is the development of an efficient and effective rendering pipeline, which integrates Gaussian primitives and hardware-accelerated ray tracing technology. Specifically, we model the physical properties of LiDAR sensors using Gaussian primitives with learnable parameters and incorporate scene graphs to handle scene dynamics. Building upon this scene representation, our framework first constructs a bounding volume hierarchy (BVH), then casts rays for each pixel and generates novel LiDAR views through a differentiable rendering algorithm. Importantly, our framework supports realistic rendering with flexible scene editing operations and various sensor configurations. Extensive experiments across multiple public benchmarks demonstrate that our method outperforms state-of-the-art methods in terms of rendering quality and efficiency. Our project page is at https://zju3dv.github.io/lidar-rt.