Abstract:Weakly-supervised methods typically guided the pixel-wise training by comparing the predictions to single-level labels containing diverse segmentation-related information at once, but struggled to represent delicate feature differences between nodule and background regions and confused incorrect information, resulting in underfitting or overfitting in the segmentation predictions. In this work, we propose a weakly-supervised network that generates multi-level labels from four-point annotation to refine diverse constraints for delicate nodule segmentation. The Distance-Similarity Fusion Prior referring to the points annotations filters out information irrelevant to nodules. The bounding box and pure foreground/background labels, generated from the point annotation, guarantee the rationality of the prediction in the arrangement of target localization and the spatial distribution of target/background regions, respectively. Our proposed network outperforms existing weakly-supervised methods on two public datasets with respect to the accuracy and robustness, improving the applicability of deep-learning based segmentation in the clinical practice of thyroid nodule diagnosis.
Abstract:Integrated sensing and communication (ISAC) is a very promising technology designed to provide both high rate communication capabilities and sensing capabilities. However, in Massive Multi User Multiple-Input Multiple-Output (Massive MU MIMO-ISAC) systems, the dense user access creates a serious multi-user interference (MUI) problem, leading to degradation of communication performance. To alleviate this problem, we propose a decentralized baseband processing (DBP) precoding method. We first model the MUI of dense user scenarios with minimizing Cramer-Rao bound (CRB) as an objective function.Hybrid precoding is an attractive ISAC technique, and hybrid precoding using Partially Connected Structures (PCS) can effectively reduce hardware cost and power consumption. We mitigate the MUI between dense users based on ThomlinsonHarashima Precoding (THP). We demonstrate the effectiveness of the proposed method through simulation experiments. Compared with the existing methods, it can effectively improve the communication data rates and energy efficiency in dense user access scenario, and reduce the hardware complexity of Massive MU MIMO-ISAC systems. The experimental results demonstrate the usefulness of our method for improving the MUI problem in ISAC systems for dense user access scenarios.
Abstract:In this paper, we propose a novel multi-task, multi-link relay semantic communications (MTML-RSC) scheme that enables the destination node to simultaneously perform image reconstruction and classification with one transmission from the source node. In the MTML-RSC scheme, the source node broadcasts a signal using semantic communications, and the relay node forwards the signal to the destination. We analyze the coupling relationship between the two tasks and the two links (source-to-relay and source-to-destination) and design a semantic-focused forward method for the relay node, where it selectively forwards only the semantics of the relevant class while ignoring others. At the destination, the node combines signals from both the source node and the relay node to perform classification, and then uses the classification result to assist in decoding the signal from the relay node for image reconstructing. Experimental results demonstrate that the proposed MTML-RSC scheme achieves significant performance gains, e.g., $1.73$ dB improvement in peak-signal-to-noise ratio (PSNR) for image reconstruction and increasing the accuracy from $64.89\%$ to $70.31\%$ for classification.
Abstract:Lightweight and efficient neural network models for deep joint source-channel coding (JSCC) are crucial for semantic communications. In this paper, we propose a novel JSCC architecture, named MambaJSCC, that achieves state-of-the-art performance with low computational and parameter overhead. MambaJSCC utilizes the visual state space model with channel adaptation (VSSM-CA) blocks as its backbone for transmitting images over wireless channels, where the VSSM-CA primarily consists of the generalized state space models (GSSM) and the zero-parameter, zero-computational channel adaptation method (CSI-ReST). We design the GSSM module, leveraging reversible matrix transformations to express generalized scan expanding operations, and theoretically prove that two GSSM modules can effectively capture global information. We discover that GSSM inherently possesses the ability to adapt to channels, a form of endogenous intelligence. Based on this, we design the CSI-ReST method, which injects channel state information (CSI) into the initial state of GSSM to utilize its native response, and into the residual state to mitigate CSI forgetting, enabling effective channel adaptation without introducing additional computational and parameter overhead. Experimental results show that MambaJSCC not only outperforms existing JSCC methods (e.g., SwinJSCC) across various scenarios but also significantly reduces parameter size, computational overhead, and inference delay.
Abstract:Traditional in the wild image quality assessment (IQA) models are generally trained with the quality labels of mean opinion score (MOS), while missing the rich subjective quality information contained in the quality ratings, for example, the standard deviation of opinion scores (SOS) or even distribution of opinion scores (DOS). In this paper, we propose a novel IQA method named RichIQA to explore the rich subjective rating information beyond MOS to predict image quality in the wild. RichIQA is characterized by two key novel designs: (1) a three-stage image quality prediction network which exploits the powerful feature representation capability of the Convolutional vision Transformer (CvT) and mimics the short-term and long-term memory mechanisms of human brain; (2) a multi-label training strategy in which rich subjective quality information like MOS, SOS and DOS are concurrently used to train the quality prediction network. Powered by these two novel designs, RichIQA is able to predict the image quality in terms of a distribution, from which the mean image quality can be subsequently obtained. Extensive experimental results verify that the three-stage network is tailored to predict rich quality information, while the multi-label training strategy can fully exploit the potentials within subjective quality rating and enhance the prediction performance and generalizability of the network. RichIQA outperforms state-of-the-art competitors on multiple large-scale in the wild IQA databases with rich subjective rating labels. The code of RichIQA will be made publicly available on GitHub.
Abstract:Recently, the dynamic scene reconstruction using Gaussians has garnered increased interest. Mainstream approaches typically employ a global deformation field to warp a 3D scene in the canonical space. However, the inherently low-frequency nature of implicit neural fields often leads to ineffective representations of complex motions. Moreover, their structural rigidity can hinder adaptation to scenes with varying resolutions and durations. To overcome these challenges, we introduce a novel approach utilizing discrete 3D control points. This method models local rays physically and establishes a motion-decoupling coordinate system, which effectively merges traditional graphics with learnable pipelines for a robust and efficient local 6-degrees-of-freedom (6-DoF) motion representation. Additionally, we have developed a generalized framework that incorporates our control points with Gaussians. Starting from an initial 3D reconstruction, our workflow decomposes the streaming 4D real-world reconstruction into four independent submodules: 3D segmentation, 3D control points generation, object-wise motion manipulation, and residual compensation. Our experiments demonstrate that this method outperforms existing state-of-the-art 4D Gaussian Splatting techniques on both the Neu3DV and CMU-Panoptic datasets. Our approach also significantly accelerates training, with the optimization of our 3D control points achievable within just 2 seconds per frame on a single NVIDIA 4070 GPU.
Abstract:3D Gaussian Splatting (3DGS) has attracted great attention in novel view synthesis because of its superior rendering efficiency and high fidelity. However, the trained Gaussians suffer from severe zooming degradation due to non-adjustable representation derived from single-scale training. Though some methods attempt to tackle this problem via post-processing techniques such as selective rendering or filtering techniques towards primitives, the scale-specific information is not involved in Gaussians. In this paper, we propose a unified optimization method to make Gaussians adaptive for arbitrary scales by self-adjusting the primitive properties (e.g., color, shape and size) and distribution (e.g., position). Inspired by the mipmap technique, we design pseudo ground-truth for the target scale and propose a scale-consistency guidance loss to inject scale information into 3D Gaussians. Our method is a plug-in module, applicable for any 3DGS models to solve the zoom-in and zoom-out aliasing. Extensive experiments demonstrate the effectiveness of our method. Notably, our method outperforms 3DGS in PSNR by an average of 9.25 dB for zoom-in and 10.40 dB for zoom-out on the NeRF Synthetic dataset.
Abstract:This paper investigates joint device identification, channel estimation, and symbol detection for cooperative multi-satellite-enhanced random access, where orthogonal time-frequency space modulation with the large antenna array is utilized to combat the dynamics of the terrestrial-satellite links (TSLs). We introduce the generalized complex exponential basis expansion model to parameterize TSLs, thereby reducing the pilot overhead. By exploiting the block sparsity of the TSLs in the angular domain, a message passing algorithm is designed for initial channel estimation. Subsequently, we examine two cooperative modes to leverage the spatial diversity within satellite constellations: the centralized mode, where computations are performed at a high-power central server, and the distributed mode, where computations are offloaded to edge satellites with minimal signaling overhead. Specifically, in the centralized mode, device identification is achieved by aggregating backhaul information from edge satellites, and channel estimation and symbol detection are jointly enhanced through a structured approximate expectation propagation (AEP) algorithm. In the distributed mode, edge satellites share channel information and exchange soft information about data symbols, leading to a distributed version of AEP. The introduced basis expansion model for TSLs enables the efficient implementation of both centralized and distributed algorithms via fast Fourier transform. Simulation results demonstrate that proposed schemes significantly outperform conventional algorithms in terms of the activity error rate, the normalized mean squared error, and the symbol error rate. Notably, the distributed mode achieves performance comparable to the centralized mode with only two exchanges of soft information about data symbols within the constellation.
Abstract:Remote Photoplethysmography (rPPG) is a non-contact technique for extracting physiological signals from facial videos, used in applications like emotion monitoring, medical assistance, and anti-face spoofing. Unlike controlled laboratory settings, real-world environments often contain motion artifacts and noise, affecting the performance of existing methods. To address this, we propose PhysMamba, a dual-stream time-frequency interactive model based on Mamba. PhysMamba integrates the state-of-the-art Mamba-2 model and employs a dual-stream architecture to learn diverse rPPG features, enhancing robustness in noisy conditions. Additionally, we designed the Cross-Attention State Space Duality (CASSD) module to improve information exchange and feature complementarity between the two streams. We validated PhysMamba using PURE, UBFC-rPPG and MMPD. Experimental results show that PhysMamba achieves state-of-the-art performance across various scenarios, particularly in complex environments, demonstrating its potential in practical remote heart rate monitoring applications.
Abstract:Index modulation (IM) significantly enhances the spectral efficiency of fluid antennas (FAs) enabled multiple-input multiple-output (MIMO) systems, which is named FA-IM. However, due to the dense distribution of ports on fluid antennas, the wireless channel exhibits a high spatial correlation, resulting in severe performance degradation in the existing FA-IM scheme. This paper proposes a novel fluid antenna grouping index modulation (FA-GIM) scheme to mitigate the spatial correlation of the FA-IM channel, further enhancing system performance. Based on the spatial correlation model of two-dimensional (2D) fluid antenna surfaces, this paper specifically adopts a block grouping method where adjacent ports are allocated to the same group. The numerical results demonstrate that the proposed scheme exhibits superior bit error rate (BER) performance compared to the state-of-the-art scheme, enhancing the robustness of FA-assisted MIMO systems.