Abstract:Accurate spectrum prediction is crucial for dynamic spectrum access (DSA) and resource allocation. However, due to the unique characteristics of spectrum data, existing methods based on the time or frequency domain often struggle to separate predictable patterns from noise. To address this, we propose the Spectral Fractional Filtering and Prediction (SFFP) framework. SFFP first employs an adaptive fractional Fourier transform (FrFT) module to transform spectrum data into a suitable fractional Fourier domain, enhancing the separability of predictable trends from noise. Subsequently, an adaptive Filter module selectively suppresses noise while preserving critical predictive features within this domain. Finally, a prediction module, leveraging a complex-valued neural network, learns and forecasts these filtered trend components. Experiments on real-world spectrum data show that the SFFP outperforms leading spectrum and general forecasting methods.
Abstract:Multimodal semantic communication has gained widespread attention due to its ability to enhance downstream task performance. A key challenge in such systems is the effective fusion of features from different modalities, which requires the extraction of rich and diverse semantic representations from each modality. To this end, we propose ProMSC-MIS, a Prompt-based Multimodal Semantic Communication system for Multi-spectral Image Segmentation. Specifically, we propose a pre-training algorithm where features from one modality serve as prompts for another, guiding unimodal semantic encoders to learn diverse and complementary semantic representations. We further introduce a semantic fusion module that combines cross-attention mechanisms and squeeze-and-excitation (SE) networks to effectively fuse cross-modal features. Simulation results show that ProMSC-MIS significantly outperforms benchmark methods across various channel-source compression levels, while maintaining low computational complexity and storage overhead. Our scheme has great potential for applications such as autonomous driving and nighttime surveillance.
Abstract:In this paper, we present detailed low-altitude channel measurements at the FR3 band in an outdoor campus environment. Using a time-domain channel sounder system, we conduct two types of measurements: path loss measurements by moving the transmitter (Tx) at one-meter intervals along a 26-point rooftop path, and directional power angular spectrum measurements through antenna scanning at half-power beam width intervals. The path loss analysis across different Rx shows that the close-in model outperforms conventional 3GPP models and height-corrected variants, with path loss exponents close to free space values indicating line-of-sight dominance. The power angular spectrum measurements show that propagation behavior varies significantly with environmental conditions. Closer Rx exhibit stronger sensitivity to ground reflections during downward Tx tilting, while obstructed links display uniform angular characteristics due to dominant scattering effects, and corridor environments produce asymmetric power distributions. These results indicate that low-altitude propagation is characterized by complex interactions between Tx height and ground scattering mechanisms, providing fundamental insights for channel modeling in emerging mid-band communication systems.
Abstract:This letter proposes a channel estimation method for reconfigurable intelligent surface (RIS)-assisted systems through a novel diffusion model (DM) framework. We reformulate the channel estimation problem as a denoising process, which aligns with the reverse process of the DM. To overcome the inherent randomness in the reverse process of conventional DM approaches, we adopt a deterministic sampling strategy with a step alignment mechanism that ensures the accuracy of channel estimation while adapting to different signal-to-noise ratio (SNR). Furthermore, to reduce the number of parameters of the U-Net, we meticulously design a lightweight network that achieves comparable performance, thereby enhancing the practicality of our proposed method. Extensive simulations demonstrate superior performance over a wide range of SNRs compared to baselines. For instance, the proposed method achieves performance improvements of up to 13.5 dB in normalized mean square error (NMSE) at SNR = 0 dB. Notably, the proposed lightweight network exhibits almost no performance loss compared to the original U-Net, while requiring only 6.59\% of its parameters.
Abstract:This paper investigates distributed source-channel coding for correlated image semantic transmission over wireless channels. In this setup, correlated images at different transmitters are separately encoded and transmitted through dedicated channels for joint recovery at the receiver. We propose a general approach for distributed image semantic communication that applies to both separate source and channel coding (SSCC) and joint source-channel coding (JSCC). Unlike existing learning-based approaches that implicitly learn source correlation in a purely data-driven manner, our method leverages nonlinear transform coding (NTC) to explicitly model source correlation from both probabilistic and geometric perspectives. A joint entropy model approximates the joint distribution of latent representations to guide adaptive rate allocation, while a transformation module aligns latent features for maximal correlation learning at the decoder. We implement this framework as D-NTSC for SSCC and D-NTSCC for JSCC, both built on Swin Transformers for effective feature extraction and correlation exploitation. Variational inference is employed to derive principled loss functions that jointly optimize encoding, decoding, and joint entropy modeling. Extensive experiments on real-world multi-view datasets demonstrate that D-NTSC and D-NTSCC outperform existing distributed SSCC and distributed JSCC baselines, respectively, achieving state-of-the-art performance in both pixel-level and perceptual quality metrics.
Abstract:This paper investigates the passive detection problem in multi-static integrated sensing and communication (ISAC) systems, where multiple sensing receivers (SRs) jointly detect a target using random unknown communication signals transmitted by a collaborative base station. Unlike traditional active detection, the considered passive detection does not require complete prior knowledge of the transmitted communication signals at each SR. First, we derive a generalized likelihood ratio test detector and conduct an asymptotic analysis of the detection statistic under the large-sample regime. We examine how the signal-to-noise ratios (SNRs) of the target paths and direct paths influence the detection performance. Then, we propose two joint transmit beamforming designs based on the analyses. In the first design, the asymptotic detection probability is maximized while satisfying the signal-to-interference-plus-noise ratio requirement for each communication user under the total transmit power constraint. Given the non-convex nature of the problem, we develop an alternating optimization algorithm based on the quadratic transform and semi-definite relaxation. The second design adopts a heuristic approach that aims to maximize the target energy, subject to a minimum SNR threshold on the direct path, and offers lower computational complexity. Numerical results validate the asymptotic analysis and demonstrate the superiority of the proposed beamforming designs in balancing passive detection performance and communication quality. This work highlights the promise of target detection using unknown communication data signals in multi-static ISAC systems.
Abstract:The advent of 6G wireless networks promises unprecedented connectivity, supporting ultra-high data rates, low latency, and massive device connectivity. However, these ambitious goals introduce significant challenges, particularly in channel estimation due to complex and dynamic propagation environments. This paper explores the concept of channel knowledge maps (CKMs) as a solution to these challenges. CKMs enable environment-aware communications by providing location-specific channel information, reducing reliance on real-time pilot measurements. We categorize CKM construction techniques into measurement-based, model-based, and hybrid methods, and examine their key applications in integrated sensing and communication systems, beamforming, trajectory optimization of unmanned aerial vehicles, base station placement, and resource allocation. Furthermore, we discuss open challenges and propose future research directions to enhance the robustness, accuracy, and scalability of CKM-based systems in the evolving 6G landscape.
Abstract:Diffusion models (DMs) have recently achieved significant success in wireless communications systems due to their denoising capabilities. The broadcast nature of wireless signals makes them susceptible not only to Gaussian noise, but also to unaware interference. This raises the question of whether DMs can effectively mitigate interference in wireless semantic communication systems. In this paper, we model the interference cancellation problem as a maximum a posteriori (MAP) problem over the joint posterior probability of the signal and interference, and theoretically prove that the solution provides excellent estimates for the signal and interference. To solve this problem, we develop an interference cancellation diffusion model (ICDM), which decomposes the joint posterior into independent prior probabilities of the signal and interference, along with the channel transition probablity. The log-gradients of these distributions at each time step are learned separately by DMs and accurately estimated through deriving. ICDM further integrates these gradients with advanced numerical iteration method, achieving accurate and rapid interference cancellation. Extensive experiments demonstrate that ICDM significantly reduces the mean square error (MSE) and enhances perceptual quality compared to schemes without ICDM. For example, on the CelebA dataset under the Rayleigh fading channel with a signal-to-noise ratio (SNR) of $20$ dB and signal to interference plus noise ratio (SINR) of 0 dB, ICDM reduces the MSE by 4.54 dB and improves the learned perceptual image patch similarity (LPIPS) by 2.47 dB.
Abstract:Millimeter-wave (mmWave) OFDM radar equipped with rainbow beamforming, enabled by joint phase-time arrays (JPTAs), provides wide-angle coverage and is well-suited for fast real-time target detection and tracking. However, accurate detection of multiple closely spaced targets remains a key challenge for conventional signal processing pipelines, particularly those relying on constant false alarm rate (CFAR) detectors. This paper presents CFARNet, a learning-based processing framework that replaces CFAR with a convolutional neural network (CNN) for peak detection in the angle-Doppler domain. The network predicts target subcarrier indices, which guide angle estimation via a known frequency-angle mapping and enable high-resolution range and velocity estimation using the MUSIC algorithm. Extensive simulations demonstrate that CFARNet significantly outperforms a CFAR+MUSIC baseline, especially under low transmit power and dense multi-target conditions. The proposed method offers superior angular resolution, enhanced robustness in low-SNR scenarios, and improved computational efficiency, highlighting the potential of data-driven approaches for high-resolution mmWave radar sensing.
Abstract:Massive multiple-input multiple-output (MIMO) technology is a key enabler of modern wireless communication systems, which demand accurate downlink channel state information (CSI) for optimal performance. Although deep learning (DL) has shown great potential in improving CSI feedback, most existing approaches fail to exploit the semantic relationship between CSI and other related channel metrics. In this paper, we propose SemCSINet, a semantic-aware Transformer-based framework that incorporates Channel Quality Indicator (CQI) into the CSI feedback process. By embedding CQI information and leveraging a joint coding-modulation (JCM) scheme, SemCSINet enables efficient, digital-friendly CSI feedback under noisy feedback channels. Experimental results on DeepMIMO datasets show that SemCSINet significantly outperforms conventional methods, particularly in scenarios with low signal-to-noise ratio (SNR) and low compression ratios (CRs), highlighting the effectiveness of semantic embedding in enhancing CSI reconstruction accuracy and system robustness.