Abstract:Reconfigurable holographic surfaces (RHSs) have been suggested as an energy-efficient solution for extremely large-scale arrays. By controlling the amplitude of RHS elements, high-gain directional holographic patterns can be achieved. However, the complexity of acquiring real-time channel state information (CSI) for beamforming is exceedingly high, particularly in large-scale RHS-assisted communications, where users may distribute in the near-field region of RHS. This paper proposes a one-shot multi-user beam training scheme in large-scale RHS-assisted systems applicable to both near and far fields. The proposed beam training scheme comprises two phases: angle search and distance search, both conducted simultaneously for all users. For the angle search, an RHS angular codebook is designed based on holographic principles so that each codeword covers multiple angles in both near-field and far-field regions, enabling simultaneous angular search for all users. For the distance search, we construct the distance-adaptive codewords covering all candidate angles of users in a real-time way by leveraging the additivity of holographic patterns, which is different from the traditional phase array case. Simulation results demonstrate that the proposed scheme achieves higher system throughput compared to traditional beam training schemes. The beam training accuracy approaches the upper bound of exhaustive search at a significantly reduced overhead.
Abstract:6G wireless networks are expected to provide seamless and data-based connections that cover space-air-ground and underwater networks. As a core partition of future 6G networks, Space-Air-Ground Integrated Networks (SAGIN) have been envisioned to provide countless real-time intelligent applications. To realize this, promoting AI techniques into SAGIN is an inevitable trend. Due to the distributed and heterogeneous architecture of SAGIN, federated learning (FL) and then quantum FL are emerging AI model training techniques for enabling future privacy-enhanced and computation-efficient SAGINs. In this work, we explore the vision of using FL/QFL in SAGINs. We present a few representative applications enabled by the integration of FL and QFL in SAGINs. A case study of QFL over UAV networks is also given, showing the merit of quantum-enabled training approach over the conventional FL benchmark. Research challenges along with standardization for QFL adoption in future SAGINs are also highlighted.
Abstract:Universal connectivity has been part of past and current generations of wireless systems, but as we approach 6G, the subject of social responsibility is being built as a core component. Given the advent of Non-Terrestrial Networks (NTN), reaching these goals will be much closer to realization than ever before. Owing to the benefits of NTN, the integration NTN and Terrestrial Networks (TN) is still infancy, where the past, the current and the future releases in the 3$^{\text{rd}}$ Generation Partnership Project (3GPP) provide guidelines to adopt a successfully co-existence/integration of TN and NTN. Therefore, in this article, we have illustrated through 3GPP guidelines, on how NTN and TN can effectively be integrated. Moreover, the role of beamforming and Artificial Intelligence (AI) algorithms is highlighted to achieve this integration. Finally the usefulness of integrating NTN and TN is validated through experimental analysis.
Abstract:Sixth generation (6G) wireless networks are envisioned to include aspects of energy footprint reduction (sustainability), besides those of network capacity and connectivity, at the design stage. This paradigm change requires radically new physical layer technologies. Notably, the integration of large-aperture arrays and the transmission over high frequency bands, such as the sub-terahertz spectrum, are two promising options. In many communication scenarios of practical interest, the use of large antenna arrays in the sub-terahertz frequency range often results in short-range transmission distances that are characterized by line-of-sight channels, in which pairs of transmitters and receivers are located in the (radiating) near field of one another. These features make the traditional designs, based on the far-field approximation, for multiple-input multiple-output (MIMO) systems sub-optimal in terms of spatial multiplexing gains. To overcome these limitations, new designs for MIMO systems are required, which account for the spherical wavefront that characterizes the electromagnetic waves in the near field, in order to ensure the highest spatial multiplexing gain without increasing the power expenditure. In this paper, we introduce an analytical framework for optimizing the deployment of antenna arrays in line-of-sight channels, which can be applied to paraxial and non-paraxial network deployments. In the paraxial setting, we devise a simpler analytical framework, which, compared to those available in the literature, provides explicit information about the impact of key design parameters. In the non-paraxial setting, we introduce a novel analytical framework that allows us to identify a set of sufficient conditions to be fulfilled for achieving the highest spatial multiplexing gain. The proposed designs are validated with numerical simulations.
Abstract:Sixth-generation (6G) networks are poised to revolutionize communication by exploring alternative spectrum options, aiming to capitalize on strengths while mitigating limitations in current fifth-generation (5G) spectrum. This paper explores the potential opportunities and emerging trends for cmWave and sub-THz spectra as key radio enablers. This paper poses and answers three key questions regarding motivation of additional spectrum to explore the strategic implementation and benefits of cmWave and sub-THz spectra. Also, we show using case studies how these complementary spectrum bands will enable new applications in 6G, such as integrated sensing and communication (ISAC), re-configurable intelligent surfaces (RIS) and non-terrestrial networks (NTN). Numerical simulations reveal that the ISAC performance of cmWave and sub-THz spectra outperforms that of existing 5G spectrum, including sub-6 GHz and mmWave. Additionally, we illustrate the effective interplay between RIS and NTN to counteract the effects of high attenuation at sub-THz frequencies. Finally, ongoing standardization endeavors, challenges and promising directions are elucidated for these complementary spectrum bands.
Abstract:With the impending arrival of the sixth generation (6G) of wireless communication technology, the telecommunications landscape is poised for another revolutionary transformation. At the forefront of this evolution are intelligent meta-surfaces (IS), emerging as a disruptive physical layer technology with the potential to redefine the capabilities and performance metrics of future wireless networks. As 6G evolves from concept to reality, industry stakeholders, standards organizations, and regulatory bodies are collaborating to define the specifications, protocols, and interoperability standards governing IS deployment. Against this background, this article delves into the ongoing standardization efforts, emerging trends, potential opportunities, and prevailing challenges surrounding the integration of IS into the framework of 6G and beyond networks. Specifically, it provides a tutorial-style overview of recent advancements in IS and explores their potential applications within future networks beyond 6G. Additionally, the article identifies key challenges in the design and implementation of various types of intelligent surfaces, along with considerations for their practical standardization. Finally, it highlights potential future prospects in this evolving field.
Abstract:The industrial Internet of Things (IIoT) under Industry 4.0 heralds an era of interconnected smart devices where data-driven insights and machine learning (ML) fuse to revolutionize manufacturing. A noteworthy development in IIoT is the integration of federated learning (FL), which addresses data privacy and security among devices. FL enables edge sensors, also known as peripheral intelligence units (PIUs) to learn and adapt using their data locally, without explicit sharing of confidential data, to facilitate a collaborative yet confidential learning process. However, the lower memory footprint and computational power of PIUs inherently require deep neural network (DNN) models that have a very compact size. Model compression techniques such as pruning can be used to reduce the size of DNN models by removing unnecessary connections that have little impact on the model's performance, thus making the models more suitable for the limited resources of PIUs. Targeting the notion of compact yet robust DNN models, we propose the integration of iterative magnitude pruning (IMP) of the DNN model being trained in an over-the-air FL (OTA-FL) environment for IIoT. We provide a tutorial overview and also present a case study of the effectiveness of IMP in OTA-FL for an IIoT environment. Finally, we present future directions for enhancing and optimizing these deep compression techniques further, aiming to push the boundaries of IIoT capabilities in acquiring compact yet robust and high-performing DNN models.
Abstract:In this paper, we study the problem of extremely large (XL) multiple-input multiple-output (MIMO) channel estimation in the Terahertz (THz) frequency band, considering the presence of propagation delays across the entire array apertures, which leads to frequency selectivity, a problem known as beam squint. Multi-carrier transmission schemes which are usually deployed to address this problem, suffer from high peak-to-average power ratio, which is specifically dominant in THz communications where low transmit power is realized. Diverging from the usual approach, we devise a novel channel estimation problem formulation in the time domain for single-carrier (SC) modulation, which favors transmissions in THz, and incorporate the beam-squint effect in a sparse vector recovery problem that is solved via sparse optimization tools. In particular, the beam squint and the sparse MIMO channel are jointly tracked by using an alternating minimization approach that decomposes the two estimation problems. The presented performance evaluation results validate that the proposed SC technique exhibits superior performance than the conventional one as well as than state-of-the-art multi-carrier approaches.
Abstract:A RIS-assisted wireless communication system in the presence of a direct communication path between the transceiver pair is considered in this paper. The transmitter-RIS and the RIS-receiver channels follow independent Nakagami-m distributions, and the direct channel between the transceiver pair follows a Rayleigh distribution. Considering this system model, the statistics of the composite channel for the RIS-assisted communication system are derived in terms of obtaining novel expressions for the probability density functions for the magnitude and the phase of the communication channel. The correctness of the analytical framework is verified via Monte Carlo simulations, and the effects of the shape parameters of the channels and the number of reflecting elements in the RIS on the randomness of the composite channel are studied via numerical results.
Abstract:This work studies the net sum-rate performance of a distributed reconfigurable intelligent surfaces (RISs)-assisted multi-user multiple-input-single-output (MISO) downlink communication system under imperfect instantaneous-channel state information (I-CSI) to implement precoding at the base station (BS) and statistical-CSI (S-CSI) to design the RISs phase-shifts. Two channel estimation (CE) protocols are considered for I-CSI acquisition: (i) a full CE protocol that estimates all direct and RISs-assisted channels over multiple training sub-phases, and (ii) a low-overhead direct estimation (DE) protocol that estimates the end-to-end channel in a single sub-phase. We derive the asymptotic equivalents of signal-to-interference-plus-noise ratio (SINR) and ergodic net sum-rate under both protocols for given RISs phase-shifts, which are then optimized based on S-CSI. Simulation results reveal that the low-complexity DE protocol yields better net sum-rate than the full CE protocol when used to obtain CSI for precoding. A benchmark full I-CSI based RISs design is also outlined and shown to yield higher SINR but lower net sum-rate than the S-CSI based RISs design.