Abstract:Beyond Diagonal Reconfigurable Intelligent Surfaces (BD-RIS) represent a groundbreaking innovation in sixth-generation (6G) wireless networks, enabling unprecedented control over wireless propagation environments compared to conventional diagonal RIS (D-RIS). This survey provides a comprehensive analysis of BD-RIS, detailing its architectures, operational principles, and mathematical modeling while highlighting its performance benefits. BD-RIS classifications, including single-connected, fully-connected, and group-connected architectures, and their reflective, transmissive, hybrid, and multi-sector operating modes are examined. Recent advances in BD-RIS-enabled 6G networks are reviewed, focusing on critical areas such as channel estimation, sum-rate and spectral efficiency optimization, energy efficiency enhancement, and security. The survey identifies fundamental challenges in BD-RIS research, including hardware design limitations, adaptive channel estimation, and the impact of non-ideal hardware effects. Future research directions for BD-RIS are proposed, emphasizing the integration of artificial intelligence and machine learning (AI/ML), joint optimization of communication and sensing, and enhanced physical layer security (PLS). This study concludes by underscoring BD-RIS's transformative potential to redefine 6G wireless networks, offering valuable insights and lessons for future research and development.
Abstract:This paper investigates the graph neural network (GNN)-enabled beamforming design for interference channels. We propose a model termed interference channel GNN (ICGNN) to solve a quality-of-service constrained energy efficiency maximization problem. The ICGNN is two-stage, where the direction and power parts of beamforming vectors are learned separately but trained jointly via unsupervised learning. By formulating the dimensionality of features independent of the transceiver pairs, the ICGNN is scalable with the number of transceiver pairs. Besides, to improve the performance of the ICGNN, the hybrid maximum ratio transmission and zero-forcing scheme reduces the output ports, the feature enhancement module unifies the two types of links into one type, the subgraph representation enhances the message passing efficiency, and the multi-head attention and residual connection facilitate the feature extracting. Furthermore, we present the over-the-air distributed implementation of the ICGNN. Ablation studies validate the effectiveness of key components in the ICGNN. Numerical results also demonstrate the capability of ICGNN in achieving near-optimal performance with an average inference time less than 0.1 ms. The scalability of ICGNN for unseen problem sizes is evaluated and enhanced by transfer learning with limited fine-tuning cost. The results of the centralized and distributed implementations of ICGNN are illustrated.
Abstract:Flexible-antenna systems, such as fluid antennas and movable antennas, have been recognized as key enabling technologies for sixth-generation (6G) wireless networks, as they can intelligently reconfigure the effective channel gains of the users and hence significantly improve their data transmission capabilities. However, existing flexible-antenna systems have been designed to combat small-scale fading in non-line-of-sight (NLoS) conditions. As a result, they lack the ability to establish line-of-sight links, which are typically 100 times stronger than NLoS links. In addition, existing flexible-antenna systems have limited flexibility, where adding/removing an antenna is not straightforward. This article introduces an innovative flexible-antenna system called pinching antennas, which are realized by applying small dielectric particles to waveguides. We first describe the basics of pinching-antenna systems and their ability to provide strong LoS links by deploying pinching antennas close to the users as well as their capability to scale up/down the antenna system. We then focus on communication scenarios with different numbers of waveguides and pinching antennas, where innovative approaches to implement multiple-input multiple-output and non-orthogonal multiple access are discussed. In addition, promising 6G-related applications of pinching antennas, including integrated sensing and communication and next-generation multiple access, are presented. Finally, important directions for future research, such as waveguide deployment and channel estimation, are highlighted.
Abstract:For high-speed train (HST) millimeter wave (mmWave) communications, the use of narrow beams with small beam coverage needs frequent beam switching, while wider beams with small beam gain leads to weaker mmWave signal strength. In this paper, we consider beam switching based beam design, which is formulated as an optimization problem aiming to minimize the number of switched beams within a predetermined railway range subject to that the receiving signal-to-noise ratio (RSNR) at the HST is no lower than a predetermined threshold. To solve this problem, we propose two sequential beam design schemes, both including two alternately-performed stages. In the first stage, given an updated beam coverage according to the railway range, we transform the problem into a feasibility problem and further convert it into a min-max optimization problem by relaxing the RSNR constraints into a penalty of the objective function. In the second stage, we evaluate the feasibility of the beamformer obtained from solving the min-max problem and determine the beam coverage accordingly. Simulation results show that compared to the first scheme, the second scheme can achieve 96.20\% reduction in computational complexity at the cost of only 0.0657\% performance degradation.
Abstract:Given the importance of reconfigurable intelligent surfaces (RISs) in next-generation mobile systems, several RIS variants have been proposed in recent years. Omni-digital-RIS (omni-DRIS) is one of the newly introduced variants of optical RIS that can successfully be driven by bit sequences to control lights emerging from simultaneous reflection and refraction processes, impacting both the achievable rate and the required number of omni-DRIS elements. In this paper, we analyze the effects of omni-DRIS-assisted transmission environment parameters to maximize the achievable rate and highlight the corresponding number of omni-DRIS elements. Furthermore, we show that the number of omni-DRIS elements that yields the highest achievable rate largely depends on the number of bits per omni-DRIS control sequence. On the other hand, this rate is determined by the remaining parameters of the transmission system and environmental factors, which include the total transmit power, transmission bandwidth, number of transmitters and users, and the channel DC gain.
Abstract:Extremely large-scale multiple-input multiple-output (XL-MIMO) is regarded as one of the key techniques to enhance the performance of future wireless communications. Different from regular MIMO, the XL-MIMO shifts part of the communication region from the far field to the near field, where the spherical-wave channel model cannot be accurately approximated by the commonly-adopted planar-wave channel model. As a result, the well-explored far-field beamspace is unsuitable for near-field communications, thereby requiring the exploration of specialized near-field beamspace. In this article, we investigate the near-field communications for XL-MIMO from the perspective of beamspace. Given the spherical wavefront characteristics of the near-field channels, we first map the antenna space to the near-field beamspace with the fractional Fourier transform. Then, we divide the near-field beamspace into three parts, including high mainlobe, low mainlobe, and sidelobe, and provide a comprehensive analysis of these components. Based on the analysis, we demonstrate the advantages of the near-field beamspace over the existing methods. Finally, we point out several applications of the near-field beamspace and highlight some potential directions for future study in the near-field beamspace.
Abstract:Internet of Things (IoT) devices are typically powered by small-sized batteries with limited energy storage capacity, requiring regular replacement or recharging. To reduce costs and maintain connectivity in IoT networks, energy harvesting technologies are regarded as a promising solution. Notably, due to its robust analytical and generative capabilities, generative artificial intelligence (GenAI) has demonstrated significant potential in optimizing energy harvesting networks. Therefore, we discuss key applications of GenAI in improving energy harvesting wireless networks for IoT in this article. Specifically, we first review the key technologies of GenAI and the architecture of energy harvesting wireless networks. Then, we show how GenAI can address different problems to improve the performance of the energy harvesting wireless networks. Subsequently, we present a case study of unmanned aerial vehicle (UAV)-enabled data collection and energy transfer. The case study shows distinctively the necessity of energy harvesting technology and verify the effectiveness of GenAI-based methods. Finally, we discuss some important open directions.
Abstract:Universal connectivity has been part of past and current generations of wireless systems, but as we approach 6G, the subject of social responsibility is being built as a core component. Given the advent of Non-Terrestrial Networks (NTN), reaching these goals will be much closer to realization than ever before. Owing to the benefits of NTN, the integration NTN and Terrestrial Networks (TN) is still infancy, where the past, the current and the future releases in the 3$^{\text{rd}}$ Generation Partnership Project (3GPP) provide guidelines to adopt a successfully co-existence/integration of TN and NTN. Therefore, in this article, we have illustrated through 3GPP guidelines, on how NTN and TN can effectively be integrated. Moreover, the role of beamforming and Artificial Intelligence (AI) algorithms is highlighted to achieve this integration. Finally the usefulness of integrating NTN and TN is validated through experimental analysis.
Abstract:Sixth-generation (6G) networks are poised to revolutionize communication by exploring alternative spectrum options, aiming to capitalize on strengths while mitigating limitations in current fifth-generation (5G) spectrum. This paper explores the potential opportunities and emerging trends for cmWave and sub-THz spectra as key radio enablers. This paper poses and answers three key questions regarding motivation of additional spectrum to explore the strategic implementation and benefits of cmWave and sub-THz spectra. Also, we show using case studies how these complementary spectrum bands will enable new applications in 6G, such as integrated sensing and communication (ISAC), re-configurable intelligent surfaces (RIS) and non-terrestrial networks (NTN). Numerical simulations reveal that the ISAC performance of cmWave and sub-THz spectra outperforms that of existing 5G spectrum, including sub-6 GHz and mmWave. Additionally, we illustrate the effective interplay between RIS and NTN to counteract the effects of high attenuation at sub-THz frequencies. Finally, ongoing standardization endeavors, challenges and promising directions are elucidated for these complementary spectrum bands.
Abstract:This paper considers near-field multiuser communications based on sparse arrays (SAs). First, for the uniform SAs (USAs), we analyze the beam gains of channel steering vectors, which shows that increasing the antenna spacings can effectively improve the spatial resolution of the antenna arrays to enhance the sum rate of multiuser communications. Then, we investigate nonuniform SAs (NSAs) to mitigate the high multiuser interference from the grating lobes of the USAs. To maximize the sum rate of near-field multiuser communications, we optimize the antenna positions of the NSAs, where a successive convex approximation-based antenna position optimization algorithm is proposed. Moreover, we find that the channels of both the USAs and the NSAs show uniform sparsity in the defined surrogate distance-angle (SD-A) domain. Based on the channel sparsity, an on-grid SD-A-domain orthogonal matching pursuit (SDA-OMP) algorithm is developed to estimate multiuser channels. To further improve the resolution of the SDA-OMP, we also design an off-grid SD-A-domain iterative super-resolution channel estimation algorithm. Simulation results demonstrate the superior performance of the proposed methods.