Abstract:Unmanned aerial vehicle (UAV)-based integrated sensing and communication (ISAC) systems are poised to revolutionize next-generation wireless networks by enabling simultaneous sensing and communication (S\&C). This survey comprehensively reviews UAV-ISAC systems, highlighting foundational concepts, key advancements, and future research directions. We explore recent advancements in UAV-based ISAC systems from various perspectives and objectives, including advanced channel estimation (CE), beam tracking, and system throughput optimization under joint sensing and communication S\&C constraints. Additionally, we examine weighted sum rate (WSR) and sensing trade-offs, delay and age of information (AoI) minimization, energy efficiency (EE), and security enhancement. These applications highlight the potential of UAV-based ISAC systems to improve spectrum utilization, enhance communication reliability, reduce latency, and optimize energy consumption across diverse domains, including smart cities, disaster relief, and defense operations. The survey also features summary tables for comparative analysis of existing methodologies, emphasizing performance, limitations, and effectiveness in addressing various challenges. By synthesizing recent advancements and identifying open research challenges, this survey aims to be a valuable resource for developing efficient, adaptive, and secure UAV-based ISAC systems.
Abstract:The reconfigurable intelligent surface (RIS) technology shows great potential in sixth-generation (6G) terrestrial and non-terrestrial networks (NTNs) since it can effectively change wireless settings to improve connectivity. Extensive research has been conducted on traditional RIS systems with diagonal phase response matrices. The straightforward RIS architecture, while cost-effective, has restricted capabilities in manipulating the wireless channels. The beyond diagonal reconfigurable intelligent surface (BD-RIS) greatly improves control over the wireless environment by utilizing interconnected phase response elements. This work proposes the integration of unmanned aerial vehicle (UAV) communications and BD-RIS in 6G NTNs, which has the potential to further enhance wireless coverage and spectral efficiency. We begin with the preliminaries of UAV communications and then discuss the fundamentals of BD-RIS technology. Subsequently, we discuss the potential of BD-RIS and UAV communications integration. We then proposed a case study based on UAV-mounted transmissive BD-RIS communication. Finally, we highlight future research directions and conclude this work.
Abstract:Backscatter communication (BC) technology offers sustainable solutions for next-generation Internet-of-Things (IoT) networks, where devices can transmit data by reflecting and adjusting incident radio frequency signals. In parallel to BC, deep reinforcement learning (DRL) has recently emerged as a promising tool to augment intelligence and optimize low-powered IoT devices. This article commences by elucidating the foundational principles underpinning BC systems, subsequently delving into the diverse array of DRL techniques and their respective practical implementations. Subsequently, it investigates potential domains and presents recent advancements in the realm of DRL-BC systems. A use case of RIS-aided non-orthogonal multiple access BC systems leveraging DRL is meticulously examined to highlight its potential. Lastly, this study identifies and investigates salient challenges and proffers prospective avenues for future research endeavors.
Abstract:The combination of backscatter communication with non-orthogonal multiple access (NOMA) has the potential to support low-powered massive connections in upcoming sixth-generation (6G) wireless networks. More specifically, backscatter communication can harvest and use the existing RF signals in the atmosphere for communication, while NOMA provides communication to multiple wireless devices over the same frequency and time resources. This paper has proposed a new resource management framework for backscatter-aided cooperative NOMA communication in upcoming 6G networks. In particular, the proposed work has simultaneously optimized the base station's transmit power, relaying node, the reflection coefficient of the backscatter tag, and time allocation under imperfect successive interference cancellation to maximize the sum rate of the system. To obtain an efficient solution for the resource management framework, we have proposed a combination of the bisection method and dual theory, where the sub-gradient method is adopted to optimize the Lagrangian multipliers. Numerical results have shown that the proposed solution provides excellent performance. When the performance of the proposed technique is compared to a brute-forcing search technique that guarantees optimal solution however, is very time-consuming, it was seen that the gap in performance is actually 0\%. Hence, the proposed framework has provided performance equal to a cumbersome brute-force search technique while offering much less complexity. The works in the literature on cooperative NOMA considered equal time distribution for cooperation and direct communication. Our results showed that optimizing the time-division can increase the performance by more than 110\% for high transmission powers.
Abstract:5G enabled maritime unmanned aerial vehicle (UAV) communication is one of the important applications of 5G wireless network which requires minimum latency and higher reliability to support mission-critical applications. Therefore, lossless reliable communication with a high data rate is the key requirement in modern wireless communication systems. These all factors highly depend upon channel conditions. In this work, a channel model is proposed for air-to-surface link exploiting millimeter wave (mmWave) for 5G enabled maritime unmanned aerial vehicle (UAV) communication. Firstly, we will present the formulated channel estimation method which directly aims to adopt channel state information (CSI) of mmWave from the channel model inculcated by UAV operating within the Long Short Term Memory (LSTM)-Distributed Conditional generative adversarial network (DCGAN) i.e. (LSTM-DCGAN) for each beamforming direction. Secondly, to enhance the applications for the proposed trained channel model for the spatial domain, we have designed an LSTM-DCGAN based UAV network, where each one will learn mmWave CSI for all the distributions. Lastly, we have categorized the most favorable LSTM-DCGAN training method and emanated certain conditions for our UAV network to increase the channel model learning rate. Simulation results have shown that the proposed LSTM-DCGAN based network is vigorous to the error generated through local training. A detailed comparison has been done with the other available state-of-the-art CGAN network architectures i.e. stand-alone CGAN (without CSI sharing), Simple CGAN (with CSI sharing), multi-discriminator CGAN, federated learning CGAN and DCGAN. Simulation results have shown that the proposed LSTM-DCGAN structure demonstrates higher accuracy during the learning process and attained more data rate for downlink transmission as compared to the previous state of artworks.
Abstract:Unmanned Aerial Vehicles (UAVs) are an important component of next-generation wireless networks that can assist in high data rate communications and provide enhanced coverage.Their high mobility and aerial nature offer deployment flexibility and low-cost infrastructure support to existing cellular networks and provide many applications that rely on mobile wireless communications. However, security is a major challenge in UAV communications, and Physical Layer Security (PLS) is an important technique to improve the reliability and security of data shared with the assistance of UAVs. Recently, Intelligent Reflecting Surfaces (IRS) have emerged as a novel technology to extend and/or enhance wireless coverage by re-configuring the propagation environment of communications. This paper provides an overview of how IRS can improve the PLS of UAV networks. We discuss different use cases of PLS for IRS enhanced UAV communications and briefly review the recent advances in this area. Then based on the recent advances, we also present a case study that utilizes alternate optimization to maximize the secrecy capacity for IRS enhanced UAV scenario in the presence of multiple eavesdroppers. Finally, we highlight several open issues and research challenges to realize PLS in IRS enhanced UAV communications.
Abstract:Non-orthogonal multiple access (NOMA) has emerged as a novel air interface technology for massive connectivity in sixth-generation (6G) era. The recent integration of NOMA in backscatter communication (BC) has triggered significant research interest due to its applications in low-powered Internet of Things (IoT) networks. However, the link security aspect of these networks has not been well investigated. This article provides a new optimization framework for improving the physical layer security of the NOMA ambient BC system. Our system model takes into account the simultaneous operation of NOMA IoT users and the backscatter node (BN) in the presence of multiple eavesdroppers (EDs). The EDs in the surrounding area can overhear the communication of base station (BS) and BN due to the wireless broadcast transmission. Thus, the main objective is to enhance the link security by optimizing the BN reflection coefficient and BS transmit power. To gauge the performance of the proposed scheme, we also present the suboptimal NOMA and conventional orthogonal multiple access as benchmark schemes. Monte Carlo simulation results demonstrate the superiority of the NOMA BC scheme over the pure NOMA scheme without BC and conventional orthogonal multiple access scheme in terms of system secrecy rate.
Abstract:The combination of non-orthogonal multiple access (NOMA) using power-domain with backscatter sensor communication (BSC) is expected to connect a large-scale Internet of things (IoT) devices in future sixth-generation (6G) era. In this paper, we introduce a BSC in multi-cell IoT network, where a source in each cell transmits superimposed signal to its associated IoT devices using NOMA. The backscatter sensor tag (BST) also transmit data towards IoT devices by reflecting and modulating the superimposed signal of the source. A new optimization framework is provided that simultaneously optimizes the total power of each source, power allocation coefficient of IoT devices and reflection coefficient of BST under imperfect successive interference cancellation decoding. The objective of this work is to maximize the total energy efficiency of IoT network subject to quality of services of each IoT device. The problem is first transformed using the Dinkelbach method and then decoupled into two subproblems. The Karush-Kuhn-Tucker conditions and Lagrangian dual method are employed to obtain the efficient solutions. In addition, we also present the conventional NOMA network without BSC as a benchmark framework. Simulation results unveil the advantage of our considered NOMA BSC networks over the conventional NOMA network.