Abstract:This paper studies the problem of hybrid holographic beamforming for sum-rate maximization in a communication system assisted by a reconfigurable holographic surface. Existing methodologies predominantly rely on gradient-based or approximation techniques necessitating iterative optimization for each update of the holographic response, which imposes substantial computational overhead. To address these limitations, we establish a mathematical relationship between the mean squared error (MSE) criterion and the holographic response of the RHS to enable alternating optimization based on the minimum MSE (MMSE). Our analysis demonstrates that this relationship exhibits a quadratic dependency on each element of the holographic beamformer. Exploiting this property, we derive closed-form optimal expressions for updating the holographic beamforming weights. Our complexity analysis indicates that the proposed approach exhibits only linear complexity in terms of the RHS size, thus, ensuring scalability for large-scale deployments. The presented simulation results validate the effectiveness of our MMSE-based holographic approach, providing useful insights.
Abstract:Beyond diagonal reconfigurable intelligent surfaces (BD-RIS) have emerged as a transformative technology for enhancing wireless communication by intelligently manipulating the propagation environment. This paper explores the potential of BD-RIS in improving cognitive radio enabled multilayer non-terrestrial networks (NTNs). It is assumed that a high-altitude platform station (HAPS) has set up the primary network, while an uncrewed aerial vehicle (UAV) establishes the secondary network in the HAPS footprint. We formulate a joint optimization problem to maximize the secrecy rate by optimizing BD-RIS phase shifts and the secondary transmitter power allocation while controlling the interference temperature from the secondary network to the primary network. To solve this problem efficiently, we decouple the original problem into two sub-problems, which are solved iteratively by relying on alternating optimization. Simulation results demonstrate the effectiveness of BD-RIS in cognitive radio-enabled multilayer NTNs to accommodate the secondary network while satisfying the constraints imposed from the primary network.
Abstract:Beyond diagonal reconfigurable intelligent surfaces (BD-RIS) have emerged as a transformative technology for enhancing wireless communication by intelligently manipulating the propagation environment. Its interconnected elements offer enhanced control over signal redirection, making it a promising solution for integrated terrestrial and non-terrestrial networks (NTNs). This paper explores the potential of BD-RIS in improving cognitive radio enabled multilayer non-terrestrial networks. We formulate a joint optimization problem that maximizes the achievable spectral efficiency by optimizing BD-RIS phase shifts and secondary transmitter power allocation while controlling the interference temperature from the secondary network to the primary network. To solve this problem efficiently, we decouple the original problem and propose a novel solution based on an alternating optimization approach. Simulation results demonstrate the effectiveness of BD-RIS in cognitive radio enabled multilayer NTNs.
Abstract:The integration of machine learning (ML) has significantly enhanced the capabilities of Earth Observation (EO) systems by enabling the extraction of actionable insights from complex datasets. However, the performance of data-driven EO applications is heavily influenced by the data collection and transmission processes, where limited satellite bandwidth and latency constraints can hinder the full transmission of original data to the receivers. To address this issue, adopting the concepts of Semantic Communication (SC) offers a promising solution by prioritizing the transmission of essential data semantics over raw information. Implementing SC for EO systems requires a thorough understanding of the impact of data processing and communication channel conditions on semantic loss at the processing center. This work proposes a novel data-fitting framework to empirically model the semantic loss using real-world EO datasets and domain-specific insights. The framework quantifies two primary types of semantic loss: (1) source coding loss, assessed via a data quality indicator measuring the impact of processing on raw source data, and (2) transmission loss, evaluated by comparing practical transmission performance against the Shannon limit. Semantic losses are estimated by evaluating the accuracy of EO applications using four task-oriented ML models, EfficientViT, MobileViT, ResNet50-DINO, and ResNet8-KD, on lossy image datasets under varying channel conditions and compression ratios. These results underpin a framework for efficient semantic-loss modeling in bandwidth-constrained EO scenarios, enabling more reliable and effective operations.
Abstract:Beyond Diagonal Reconfigurable Intelligent Surfaces (BD-RIS) represent a groundbreaking innovation in sixth-generation (6G) wireless networks, enabling unprecedented control over wireless propagation environments compared to conventional diagonal RIS (D-RIS). This survey provides a comprehensive analysis of BD-RIS, detailing its architectures, operational principles, and mathematical modeling while highlighting its performance benefits. BD-RIS classifications, including single-connected, fully-connected, and group-connected architectures, and their reflective, transmissive, hybrid, and multi-sector operating modes are examined. Recent advances in BD-RIS-enabled 6G networks are reviewed, focusing on critical areas such as channel estimation, sum-rate and spectral efficiency optimization, energy efficiency enhancement, and security. The survey identifies fundamental challenges in BD-RIS research, including hardware design limitations, adaptive channel estimation, and the impact of non-ideal hardware effects. Future research directions for BD-RIS are proposed, emphasizing the integration of artificial intelligence and machine learning (AI/ML), joint optimization of communication and sensing, and enhanced physical layer security (PLS). This study concludes by underscoring BD-RIS's transformative potential to redefine 6G wireless networks, offering valuable insights and lessons for future research and development.
Abstract:Reconfigurable intelligent surfaces (RIS) can reshape the characteristics of wireless channels by intelligently regulating the phase shifts of reflecting elements. Recently, various codebook schemes have been utilized to optimize the reflection coefficients (RCs); however, the selection of the optimal codeword is usually obtained by evaluating a metric of interest. In this letter, we propose a novel weighted design on the discrete Fourier transform (DFT) codebook to obtain the optimal RCs for RIS-assisted point-to-point multiple-input multiple-output (MIMO) systems. Specifically, we first introduce a channel training protocol where we configure the RIS RCs using the DFT codebook to obtain a set of observations through the uplink training process. Secondly, based on these observed samples, the Lagrange multiplier method is utilized to optimize the weights in an iterative manner, which could result in a higher channel capacity for assisting in the downlink data transmission. Thirdly, we investigate the effect of different codeword configuration orders on system performance and design an efficient codeword configuration method based on statistical channel state information (CSI). Finally, numerical simulations are provided to demonstrate the performance of the proposed scheme.
Abstract:Reconfigurable holographic surfaces (RHS) have emerged as a transformative material technology, enabling dynamic control of electromagnetic waves to generate versatile holographic beam patterns. This paper addresses the problem of secrecy rate maximization for an RHS-assisted systems by joint designing the digital beamforming, artificial noise (AN), and the analog holographic beamforming. However, such a problem results to be non-convex and challenging. Therefore, to solve it, a novel alternating optimization algorithm based on the majorization-maximization (MM) framework for RHS-assisted systems is proposed, which rely on surrogate functions to facilitate efficient and reliable optimization. In the proposed approach, digital beamforming design ensures directed signal power toward the legitimate user while minimizing leakage to the unintended receiver. The AN generation method projects noise into the null space of the legitimate user channel, aligning it with the unintended receiver channel to degrade its signal quality. Finally, the holographic beamforming weights are optimized to refine the wavefronts for enhanced secrecy rate performance Simulation results validate the effectiveness of the proposed framework, demonstrating significant improvements in secrecy rate compared to the benchmark method.
Abstract:This paper pioneers the field of multi-user holographic unmanned aerial vehicle (UAV) communications, laying a solid foundation for future innovations in next-generation aerial wireless networks. The study focuses on the challenging problem of jointly optimizing hybrid holographic beamforming and 3D UAV positioning in scenarios where the UAV is equipped with a reconfigurable holographic surface (RHS) instead of conventional phased array antennas. Using the unique capabilities of RHSs, the system dynamically adjusts both the position of the UAV and its hybrid beamforming properties to maximize the sum rate of the network. To address this complex optimization problem, we propose an iterative algorithm combining zero-forcing digital beamforming and a gradient ascent approach for the holographic patterns and the 3D position optimization, while ensuring practical feasibility constraints. The algorithm is designed to effectively balance the trade-offs between power, beamforming, and UAV trajectory constraints, enabling adaptive and efficient communications, while assuring a monotonic increase in the sum-rate performance. Our numerical investigations demonstrate that the significant performance improvements with the proposed approach over the benchmark methods, showcasing enhanced sum rate and system adaptability under varying conditions.
Abstract:Reconfigurable holographic surfaces (RHS) have emerged as a transformative material technology, enabling dynamic control of electromagnetic waves to generate versatile holographic beam patterns. This paper addresses the problem of joint hybrid holographic beamforming and user scheduling under per-user minimum quality-of-service (QoS) constraints, a critical challenge in resource-constrained networks. However, such a problem results in mixed-integer non-convex optimization, making it difficult to identify feasible solutions efficiently. To overcome this challenge, we propose a novel iterative optimization framework that jointly solves the problem to maximize the RHS-assisted network sum-rate, efficiently managing holographic beamforming patterns, dynamically scheduling users, and ensuring the minimum QoS requirements for each scheduled user. The proposed framework relies on zero-forcing digital beamforming, gradient-ascent-based holographic beamformer optimization, and a greedy user selection principle. Our extensive simulation results validate the effectiveness of the proposed scheme, demonstrating their superior performance compared to the benchmark algorithms in terms of sum-rate performance, while meeting the minimum per-user QoS constraints
Abstract:The demand for cost-effective, low-profile user terminals for satellite communications supporting multicast services for Geostationary Orbit (GEO) satellites, has become a key focus for many Direct-to-Home (DTH) providers where the high data rates in the downlink are required. Planar antenna arrays with increased frequency bandwidth and improved ratio using meta-surfaces are considered as an effective solution for such systems. This paper presents a low-cost, aperture-coupled metasurface-enhanced patch antenna, operating within the 10.7-12.7 GHz frequency range. The antenna is designed to achieve a realized gain of at least 27 dBi across the band of interest using 32 x 32 array antennas distributed in a rectangular lattice. Initially configured for linear polarization, the antenna can be upgraded to support dual or circular polarization if required.