Interdisciplinary Centre for Security, Reliability and Trust
Abstract:This paper investigates joint device activity detection and channel estimation for grant-free random access in Low-earth orbit (LEO) satellite communications. We consider uplink communications from multiple single-antenna terrestrial users to a LEO satellite equipped with a uniform planar array of multiple antennas, where orthogonal frequency division multiplexing (OFDM) modulation is adopted. To combat the severe Doppler shift, a transmission scheme is proposed, where the discrete prolate spheroidal basis expansion model (DPS-BEM) is introduced to reduce the number of unknown channel parameters. Then the vector approximate message passing (VAMP) algorithm is employed to approximate the minimum mean square error estimation of the channel, and the Markov random field is combined to capture the channel sparsity. Meanwhile, the expectation-maximization (EM) approach is integrated to learn the hyperparameters in priors. Finally, active devices are detected by calculating energy of the estimated channel. Simulation results demonstrate that the proposed method outperforms conventional algorithms in terms of activity error rate and channel estimation precision.
Abstract:Provisioning secrecy for all users, given the heterogeneity and uncertainty of their channel conditions, locations, and the unknown location of the attacker/eavesdropper, is challenging and not always feasible. This work takes the first step to guarantee secrecy for all users where a low resolution intelligent reflecting surfaces (IRS) is used to enhance legitimate users' reception and thwart the potential eavesdropper (Eve) from intercepting. In real-life scenarios, due to hardware limitations of the IRS' passive reflective elements (PREs), the use of a full-resolution (continuous) phase shift (CPS) is impractical. In this paper, we thus consider a more practical case where the phase shift (PS) is modeled by a low-resolution (quantized) phase shift (QPS) while addressing the phase shift error (PSE) induced by the imperfect channel state information (CSI). To that end, we aim to maximize the minimum secrecy rate (SR) among all users by jointly optimizing the transmitter's beamforming vector and the IRS's passive reflective elements (PREs) under perfect/imperfect/unknown CSI. The resulting optimization problem is non-convex and even more complicated under imperfect/unknown CSI.
Abstract:This paper proposes a framework for robust design of UAV-assisted wireless networks that combine 3D trajectory optimization with user mobility prediction to address dynamic resource allocation challenges. We proposed a sparse second-order prediction model for real-time user tracking coupled with heuristic user clustering to balance service quality and computational complexity. The joint optimization problem is formulated to maximize the minimum rate. It is then decomposed into user association, 3D trajectory design, and resource allocation subproblems, which are solved iteratively via successive convex approximation (SCA). Extensive simulations demonstrate: (1) near-optimal performance with $\epsilon \approx 0.67\%$ deviation from upper-bound solutions, (2) $16\%$ higher minimum rates for distant users compared to non-predictive 3D designs, and (3) $10-30\%$ faster outage mitigation than time-division benchmarks. The framework's adaptive speed control enables precise mobile user tracking while maintaining energy efficiency under constrained flight time. Results demonstrate superior robustness in edge-coverage scenarios, making it particularly suitable for $5G/6G$ networks.
Abstract:This paper studies the problem of hybrid holographic beamforming for sum-rate maximization in a communication system assisted by a reconfigurable holographic surface. Existing methodologies predominantly rely on gradient-based or approximation techniques necessitating iterative optimization for each update of the holographic response, which imposes substantial computational overhead. To address these limitations, we establish a mathematical relationship between the mean squared error (MSE) criterion and the holographic response of the RHS to enable alternating optimization based on the minimum MSE (MMSE). Our analysis demonstrates that this relationship exhibits a quadratic dependency on each element of the holographic beamformer. Exploiting this property, we derive closed-form optimal expressions for updating the holographic beamforming weights. Our complexity analysis indicates that the proposed approach exhibits only linear complexity in terms of the RHS size, thus, ensuring scalability for large-scale deployments. The presented simulation results validate the effectiveness of our MMSE-based holographic approach, providing useful insights.
Abstract:Beyond diagonal reconfigurable intelligent surfaces (BD-RIS) have emerged as a transformative technology for enhancing wireless communication by intelligently manipulating the propagation environment. This paper explores the potential of BD-RIS in improving cognitive radio enabled multilayer non-terrestrial networks (NTNs). It is assumed that a high-altitude platform station (HAPS) has set up the primary network, while an uncrewed aerial vehicle (UAV) establishes the secondary network in the HAPS footprint. We formulate a joint optimization problem to maximize the secrecy rate by optimizing BD-RIS phase shifts and the secondary transmitter power allocation while controlling the interference temperature from the secondary network to the primary network. To solve this problem efficiently, we decouple the original problem into two sub-problems, which are solved iteratively by relying on alternating optimization. Simulation results demonstrate the effectiveness of BD-RIS in cognitive radio-enabled multilayer NTNs to accommodate the secondary network while satisfying the constraints imposed from the primary network.
Abstract:Beyond diagonal reconfigurable intelligent surfaces (BD-RIS) have emerged as a transformative technology for enhancing wireless communication by intelligently manipulating the propagation environment. Its interconnected elements offer enhanced control over signal redirection, making it a promising solution for integrated terrestrial and non-terrestrial networks (NTNs). This paper explores the potential of BD-RIS in improving cognitive radio enabled multilayer non-terrestrial networks. We formulate a joint optimization problem that maximizes the achievable spectral efficiency by optimizing BD-RIS phase shifts and secondary transmitter power allocation while controlling the interference temperature from the secondary network to the primary network. To solve this problem efficiently, we decouple the original problem and propose a novel solution based on an alternating optimization approach. Simulation results demonstrate the effectiveness of BD-RIS in cognitive radio enabled multilayer NTNs.
Abstract:The integration of machine learning (ML) has significantly enhanced the capabilities of Earth Observation (EO) systems by enabling the extraction of actionable insights from complex datasets. However, the performance of data-driven EO applications is heavily influenced by the data collection and transmission processes, where limited satellite bandwidth and latency constraints can hinder the full transmission of original data to the receivers. To address this issue, adopting the concepts of Semantic Communication (SC) offers a promising solution by prioritizing the transmission of essential data semantics over raw information. Implementing SC for EO systems requires a thorough understanding of the impact of data processing and communication channel conditions on semantic loss at the processing center. This work proposes a novel data-fitting framework to empirically model the semantic loss using real-world EO datasets and domain-specific insights. The framework quantifies two primary types of semantic loss: (1) source coding loss, assessed via a data quality indicator measuring the impact of processing on raw source data, and (2) transmission loss, evaluated by comparing practical transmission performance against the Shannon limit. Semantic losses are estimated by evaluating the accuracy of EO applications using four task-oriented ML models, EfficientViT, MobileViT, ResNet50-DINO, and ResNet8-KD, on lossy image datasets under varying channel conditions and compression ratios. These results underpin a framework for efficient semantic-loss modeling in bandwidth-constrained EO scenarios, enabling more reliable and effective operations.
Abstract:Beyond Diagonal Reconfigurable Intelligent Surfaces (BD-RIS) represent a groundbreaking innovation in sixth-generation (6G) wireless networks, enabling unprecedented control over wireless propagation environments compared to conventional diagonal RIS (D-RIS). This survey provides a comprehensive analysis of BD-RIS, detailing its architectures, operational principles, and mathematical modeling while highlighting its performance benefits. BD-RIS classifications, including single-connected, fully-connected, and group-connected architectures, and their reflective, transmissive, hybrid, and multi-sector operating modes are examined. Recent advances in BD-RIS-enabled 6G networks are reviewed, focusing on critical areas such as channel estimation, sum-rate and spectral efficiency optimization, energy efficiency enhancement, and security. The survey identifies fundamental challenges in BD-RIS research, including hardware design limitations, adaptive channel estimation, and the impact of non-ideal hardware effects. Future research directions for BD-RIS are proposed, emphasizing the integration of artificial intelligence and machine learning (AI/ML), joint optimization of communication and sensing, and enhanced physical layer security (PLS). This study concludes by underscoring BD-RIS's transformative potential to redefine 6G wireless networks, offering valuable insights and lessons for future research and development.
Abstract:Reconfigurable intelligent surfaces (RIS) can reshape the characteristics of wireless channels by intelligently regulating the phase shifts of reflecting elements. Recently, various codebook schemes have been utilized to optimize the reflection coefficients (RCs); however, the selection of the optimal codeword is usually obtained by evaluating a metric of interest. In this letter, we propose a novel weighted design on the discrete Fourier transform (DFT) codebook to obtain the optimal RCs for RIS-assisted point-to-point multiple-input multiple-output (MIMO) systems. Specifically, we first introduce a channel training protocol where we configure the RIS RCs using the DFT codebook to obtain a set of observations through the uplink training process. Secondly, based on these observed samples, the Lagrange multiplier method is utilized to optimize the weights in an iterative manner, which could result in a higher channel capacity for assisting in the downlink data transmission. Thirdly, we investigate the effect of different codeword configuration orders on system performance and design an efficient codeword configuration method based on statistical channel state information (CSI). Finally, numerical simulations are provided to demonstrate the performance of the proposed scheme.
Abstract:Reconfigurable holographic surfaces (RHS) have emerged as a transformative material technology, enabling dynamic control of electromagnetic waves to generate versatile holographic beam patterns. This paper addresses the problem of secrecy rate maximization for an RHS-assisted systems by joint designing the digital beamforming, artificial noise (AN), and the analog holographic beamforming. However, such a problem results to be non-convex and challenging. Therefore, to solve it, a novel alternating optimization algorithm based on the majorization-maximization (MM) framework for RHS-assisted systems is proposed, which rely on surrogate functions to facilitate efficient and reliable optimization. In the proposed approach, digital beamforming design ensures directed signal power toward the legitimate user while minimizing leakage to the unintended receiver. The AN generation method projects noise into the null space of the legitimate user channel, aligning it with the unintended receiver channel to degrade its signal quality. Finally, the holographic beamforming weights are optimized to refine the wavefronts for enhanced secrecy rate performance Simulation results validate the effectiveness of the proposed framework, demonstrating significant improvements in secrecy rate compared to the benchmark method.