Interdisciplinary Centre for Security, Reliability and Trust
Abstract:This paper studies multi-satellite multi-stream (MSMS) beamspace transmission, where multiple satellites cooperate to form a distributed multiple-input multiple-output (MIMO) system and jointly deliver multiple data streams to multi-antenna user terminals (UTs), and beamspace transmission combines earth-moving beamforming with beam-domain precoding. For the first time, we formulate the signal model for MSMS beamspace MIMO transmission. Under synchronization errors, multi-antenna UTs enable the distributed MIMO channel to exhibit higher rank, supporting multiple data streams. Beamspace MIMO retains conventional codebook based beamforming while providing the performance gains of precoding. Based on the signal model, we propose statistical channel state information (sCSI)-based optimization of satellite clustering, beam selection, and transmit precoding, using a sum-rate upper-bound approximation. With given satellite clustering and beam selection, we cast precoder design as an equivalent covariance decomposition-based weighted minimum mean square error (CDWMMSE) problem. To obtain tractable algorithms, we develop a closed-form covariance decomposition required by CDWMMSE and derive an iterative MSMS beam-domain precoder under sCSI. Following this, we further propose several heuristic closed-form precoders to avoid iterative cost. For satellite clustering, we enhance a competition-based algorithm by introducing a mechanism to regulate the number of satellites serving certain UT. Furthermore, we design a two-stage low-complexity beam selection algorithm focused on enhancing the effective channel power. Simulations under practical configurations validate the proposed methods across the number of data streams, receive antennas, serving satellites, and active beams, and show that beamspace transmission approaches conventional MIMO performance at lower complexity.
Abstract:Inter-satellite-link-enabled low-Earth-orbit (LEO) satellite constellations are evolving toward networked architectures that support constellation-level cooperation, enabling multiple satellites to jointly serve user terminals through cooperative beamforming. While such cooperation can substantially enhance link budgets and achievable rates, its practical realization is challenged by the scalability limitations of centralized beamforming designs and the stringent computational and signaling constraints of large LEO constellations. This paper develops a fully decentralized cooperative beamforming framework for networked LEO satellite downlinks. Using an ergodic-rate-based formulation, we first derive a centralized weighted minimum mean squared error (WMMSE) solution as a performance benchmark. Building on this formulation, we propose a topology-agnostic decentralized beamforming algorithm by localizing the benchmark and exchanging a set of globally coupled variables whose dimensions are independent of the antenna number and enforcing consensus over arbitrary connected inter-satellite networks. The resulting algorithm admits fully parallel execution across satellites. To further enhance scalability, we eliminate the consensus-related auxiliary variables in closed form and derive a low-complexity per-satellite update rule that is optimal to local iteration and admits a quasi-closed-form solution via scalar line search. Simulation results show that the proposed decentralized schemes closely approach centralized performance under practical inter-satellite topologies, while significantly reducing computational complexity and signaling overhead, enabling scalable cooperative beamforming for large LEO constellations.
Abstract:This paper investigates the unmanned aerial vehicle (UAV)-assisted resilience perspective in the 6G network energy saving (NES) scenario. More specifically, we consider multiple ground base stations (GBSs) and each GBS has three different sectors/cells in the terrestrial networks, and multiple cells are turned off due to NES or incidents, e.g., disasters, hardware failures, or outages. To address this, we propose a Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework to enable UAV-assisted communication by jointly optimizing UAV trajectories, transmission power, and user-UAV association under a sleeping ground base station (GBS) strategy. This framework aims to ensure the resilience of active users in the network and the long-term operability of UAVs. Specifically, it maximizes service coverage for users during power outages or NES zones, while minimizing the energy consumption of UAVs. Simulation results demonstrate that the proposed MADDPG policy consistently achieves high coverage ratio across different testing episodes, outperforming other baselines. Moreover, the MADDPG framework attains the lowest total energy consumption, with a reduction of approximately 24\% compared to the conventional all GBS ON configuration, while maintaining a comparable user service rate. These results confirm the effectiveness of the proposed approach in achieving a superior trade-off between energy efficiency and service performance, supporting the development of sustainable and resilient UAV-assisted cellular networks.
Abstract:The rise of ultra-dense LEO constellations creates a complex and asynchronous network environment, driven by their massive scale, dynamic topologies, and significant delays. This unique complexity demands an adaptive packet routing algorithm that is asynchronous, risk-aware, and capable of balancing diverse and often conflicting QoS objectives in a decentralized manner. However, existing methods fail to address this need, as they typically rely on impractical synchronous decision-making and/or risk-oblivious approaches. To tackle this gap, we introduce PRIMAL, an event-driven multi-agent routing framework designed specifically to allow each satellite to act independently on its own event-driven timeline, while managing the risk of worst-case performance degradation via a principled primal-dual approach. This is achieved by enabling agents to learn the full cost distribution of the targeted QoS objectives and constrain tail-end risks. Extensive simulations on a LEO constellation with 1584 satellites validate its superiority in effectively optimizing latency and balancing load. Compared to a recent risk-oblivious baseline, it reduces queuing delay by over 70%, and achieves a nearly 12 ms end-to-end delay reduction in loaded scenarios. This is accomplished by resolving the core conflict between naive shortest-path finding and congestion avoidance, highlighting such autonomous risk-awareness as a key to robust routing.
Abstract:In this work, we study a multi-user NTN in which a satellite serves as the primary network and a high-altitude platform station (HAPS) operates as the secondary network, acting as a cognitive radio. To reduce the cost, complexity, and power consumption of conventional antenna arrays, we equip the HAPS with a transmissive BD-RIS antenna front end. We then formulate a joint optimization problem for the BD-RIS phase response and the HAPS transmit power allocation under strict per-user interference temperature constraints. To tackle the resulting highly nonconvex problem, we propose an alternating-optimization framework: the power-allocation subproblem admits a closed-form, water-filling-type solution derived from the Karush-Kuhn-Tucker (KKT) conditions, while the BD-RIS configuration is refined via Riemannian manifold optimization. Simulation results show significant gains in data rate and interference suppression over diagonal RIS-assisted benchmarks, establishing BD-RIS as a promising enabler for future multilayer NTNs.
Abstract:Although symbol-level precoding (SLP) based on constructive interference (CI) exploitation offers performance gains, its high complexity remains a bottleneck. This paper addresses this challenge with an end-to-end deep learning (DL) framework with low inference complexity that leverages the structure of the optimal SLP solution in the closed-form and its inherent tensor equivariance (TE), where TE denotes that a permutation of the input induces the corresponding permutation of the output. Building upon the computationally efficient model-based formulations, as well as their known closed-form solutions, we analyze their relationship with linear precoding (LP) and investigate the corresponding optimality condition. We then construct a mapping from the problem formulation to the solution and prove its TE, based on which the designed networks reveal a specific parameter-sharing pattern that delivers low computational complexity and strong generalization. Leveraging these, we propose the backbone of the framework with an attention-based TE module, achieving linear computational complexity. Furthermore, we demonstrate that such a framework is also applicable to imperfect CSI scenarios, where we design a TE-based network to map the CSI, statistics, and symbols to auxiliary variables. Simulation results show that the proposed framework captures substantial performance gains of optimal SLP, while achieving an approximately 80-times speedup over conventional methods and maintaining strong generalization across user numbers and symbol block lengths.
Abstract:In recent years, the success of large language models (LLMs) has inspired growing interest in exploring their potential applications in wireless communications, especially for channel prediction tasks. However, directly applying LLMs to channel prediction faces a domain mismatch issue stemming from their text-based pre-training. To mitigate this, the ``adapter + LLM" paradigm has emerged, where an adapter is designed to bridge the domain gap between the channel state information (CSI) data and LLMs. While showing initial success, existing adapters may not fully exploit the potential of this paradigm. To address this limitation, this work provides a key insight that learning representations from the spectral components of CSI features can more effectively help bridge the domain gap. Accordingly, we propose a spectral-attentive framework, named SCA-LLM, for channel prediction in multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Specifically, its novel adapter can capture finer spectral details and better adapt the LLM for channel prediction than previous methods. Extensive simulations show that SCA-LLM achieves state-of-the-art prediction performance and strong generalization, yielding up to $-2.4~\text{dB}$ normalized mean squared error (NMSE) advantage over the previous LLM based method. Ablation studies further confirm the superiority of SCA-LLM in mitigating domain mismatch.
Abstract:The use of communication satellites in medium Earth orbit (MEO) is foreseen to provide quasi-global broadband Internet connectivity in the coming networking ecosystems. Multi-user multiple-input single-output (MU-MISO) digital signal processing techniques, such as precoding, emerge as appealing technological enablers in the forward link of multi-beam satellite systems operating in full frequency reuse (FFR). However, the orbit dynamics of MEO satellites pose additional challenges that must be carefully evaluated and addressed. This work presents the design of an in-lab testbed based on software-defined radio (SDR) platforms and the corresponding adaptations required for efficient precoding in a MEO scenario. The setup incorporates a precise orbit model and the radiation pattern of a custom-designed direct radiating array (DRA). We analyze the main impairments affecting precoding performance, including Doppler shifts and payload phase noise, and propose a synchronization loop to mitigate these effects. Preliminary experimental results validate the feasibility and effectiveness of the proposed solution.
Abstract:Carrier Aggregation (CA) is a technique used in 5G and previous cellular generations to temporarily increase the data rate of a specific user during peak demand periods or to reduce carrier congestion. CA is achieved by combining two or more carriers and providing a virtual, wider overall bandwidth to high-demand users of the system. CA was introduced in the 4G/LTE wireless era and has been proven effective in 5G as well, where it is said to play a significant role in efficient network capacity management. Given this success, the satellite communication (SatCom) community has put its attention into CA and the potential benefits it can bring in terms of better spectrum utilization and better meeting the user traffic demand. While the theoretical evaluation of CA for SatCom has already been presented in several works, this article presents the design and results obtained with an experimentation testbed based on Software Defined Radio (SDR) and a satellite channel emulator. We first present the detailed implementation design, which includes a Gateway (GW) module responsible for PDU-scheduling across the aggregated carriers, and a User Terminal (UT) module responsible for aggregating the multiple received streams. The second part of the article presents the experimental evaluation, including CA over a single Geostationary (GEO) satellite, CA over a single Medium Earth Orbit (MEO) satellite, and CA combining carriers sent over GEO and MEO satellites. A key contribution of this work is the explicit consideration of multi-orbit scenarios in the testbed design and validation. The testing results show promising benefits of CA over SatCom systems, motivating potential upcoming testing on over-the-air systems.




Abstract:This paper investigates a low Earth orbit (LEO) satellite communication system enhanced by an active stacked intelligent metasurface (ASIM), mounted on the backplate of the satellite solar panels to efficiently utilize limited onboard space and reduce the main satellite power amplifier requirements. The system serves multiple ground users via rate-splitting multiple access (RSMA) and IoT devices through a symbiotic radio network. Multi-layer sequential processing in the ASIM improves effective channel gains and suppresses inter-user interference, outperforming active RIS and beyond-diagonal RIS designs. Three optimization approaches are evaluated: block coordinate descent with successive convex approximation (BCD-SCA), model-assisted multi-agent constraint soft actor-critic (MA-CSAC), and multi-constraint proximal policy optimization (MCPPO). Simulation results show that BCD-SCA converges fast and stably in convex scenarios without learning, MCPPO achieves rapid initial convergence with moderate stability, and MA-CSAC attains the highest long-term spectral and energy efficiency in large-scale networks. Energy-spectral efficiency trade-offs are analyzed for different ASIM elements, satellite antennas, and transmit power. Overall, the study demonstrates that integrating multi-layer ASIM with suitable optimization algorithms offers a scalable, energy-efficient, and high-performance solution for next-generation LEO satellite communications.