Abstract:In this article, we propose the integration of the Holographic Multiple Input Multiple Output (HMIMO) as a transformative solution for next generation Non-Terrestrial Networks (NTNs), addressing key challenges, such as high hardware costs, launch expenses, and energy inefficiency. Traditional NTNs are constrained by the financial and operational limitations posed by bulky, costly antenna systems, alongside the complexities of maintaining effective communications in space. HMIMO offers a novel approach utilizing compact and lightweight arrays of densely packed radiating elements with real-time reconfiguration capabilities, thus, capable of optimizing system performance under dynamic conditions such as varying orbital dynamics and Doppler shifts. By replacing conventional antenna systems with HMIMO, the complexity and cost of satellite manufacturing and launch can be substantially reduced, enabling more streamlined and cost-effective satellite designs. This advancement holds significant potential to democratize space communications, making them accessible to a broader range of stakeholders, including smaller nations and commercial enterprises. Moreover, the inherent capabilities of HMIMO in enhancing energy efficiency, scalability, and adaptability position this technology as a key enabler of new use cases and sustainable satellite operations.
Abstract:This study presents an innovative dynamic weighting knowledge distillation (KD) framework tailored for efficient Earth observation (EO) image classification (IC) in resource-constrained settings. Utilizing EfficientViT and MobileViT as teacher models, this framework enables lightweight student models, particularly ResNet8 and ResNet16, to surpass 90% in accuracy, precision, and recall, adhering to the stringent confidence thresholds necessary for reliable classification tasks. Unlike conventional KD methods that rely on static weight distribution, our adaptive weighting mechanism responds to each teacher model's confidence, allowing student models to prioritize more credible sources of knowledge dynamically. Remarkably, ResNet8 delivers substantial efficiency gains, achieving a 97.5% reduction in parameters, a 96.7% decrease in FLOPs, an 86.2% cut in power consumption, and a 63.5% increase in inference speed over MobileViT. This significant optimization of complexity and resource demands establishes ResNet8 as an optimal candidate for EO tasks, combining robust performance with feasibility in deployment. The confidence-based, adaptable KD approach underscores the potential of dynamic distillation strategies to yield high-performing, resource-efficient models tailored for satellite-based EO applications. The reproducible code is accessible on our GitHub repository.
Abstract:This research exploits the applications of reconfigurable intelligent surface (RIS)-assisted multiple input multiple output (MIMO) systems, specifically addressing the enhancement of communication reliability with modulated signals. Specifically, we first derive the analytical downlink symbol error rate (SER) of each user as a multivariate function of both the phase-shift and beamforming vectors. The analytical SER enables us to obtain insights into the synergistic dynamics between the RIS and MIMO communication. We then introduce a novel average SER minimization problem subject to the practical constraints of the transmitted power budget and phase shift coefficients, which is NP-hard. By incorporating the differential evolution (DE) algorithm as a pivotal tool for optimizing the intricate active and passive beamforming variables in RIS-assisted communication systems, the non-convexity of the considered SER optimization problem can be effectively handled. Furthermore, an efficient local search is incorporated into the DE algorithm to overcome the local optimum, and hence offer low SER and high communication reliability. Monte Carlo simulations validate the analytical results and the proposed optimization framework, indicating that the joint active and passive beamforming design is superior to the other benchmarks.
Abstract:The reconfigurable intelligent surface (RIS) technology shows great potential in sixth-generation (6G) terrestrial and non-terrestrial networks (NTNs) since it can effectively change wireless settings to improve connectivity. Extensive research has been conducted on traditional RIS systems with diagonal phase response matrices. The straightforward RIS architecture, while cost-effective, has restricted capabilities in manipulating the wireless channels. The beyond diagonal reconfigurable intelligent surface (BD-RIS) greatly improves control over the wireless environment by utilizing interconnected phase response elements. This work proposes the integration of unmanned aerial vehicle (UAV) communications and BD-RIS in 6G NTNs, which has the potential to further enhance wireless coverage and spectral efficiency. We begin with the preliminaries of UAV communications and then discuss the fundamentals of BD-RIS technology. Subsequently, we discuss the potential of BD-RIS and UAV communications integration. We then proposed a case study based on UAV-mounted transmissive BD-RIS communication. Finally, we highlight future research directions and conclude this work.
Abstract:Remote sensing image classification is a critical component of Earth observation (EO) systems, traditionally dominated by convolutional neural networks (CNNs) and other deep learning techniques. However, the advent of Transformer-based architectures and large-scale pre-trained models has significantly shifted, offering enhanced performance and efficiency. This study focuses on identifying the most effective pre-trained model for land use classification in onboard satellite processing, emphasizing achieving high accuracy, computational efficiency, and robustness against noisy data conditions commonly encountered during satellite-based inference. Through extensive experimentation, we compared traditional CNN-based models, ResNet-based models, and various pre-trained vision Transformer models. Our findings demonstrate that pre-trained Transformer models, particularly MobileViTV2 and EfficientViT-M2, outperform models trained from scratch in accuracy and efficiency. These models achieve high performance with reduced computational requirements and exhibit greater resilience during inference under noisy conditions. While MobileViTV2 excelled on clean validation data, EfficientViT-M2 proved more robust when handling noise, making it the most suitable model for onboard satellite Earth observation tasks. In conclusion, EfficientViT-M2 is the optimal choice for reliable and efficient remote sensing image classification in satellite operations, achieving 98.76\% accuracy, precision, and recall. Specifically, EfficientViT-M2 delivered the highest performance across all metrics, excelled in training efficiency (1,000s) and inference time (10s), and demonstrated greater robustness (overall robustness score at 0.79).
Abstract:This paper examines integrated satellite-terrestrial networks (ISTNs) in urban environments, where terrestrial networks (TNs) and non-terrestrial networks (NTNs) share the same frequency band in the C-band which is considered the promising band for both systems. The dynamic issues in ISTNs, arising from the movement of low Earth orbit satellites (LEOSats) and the mobility of users (UEs), are addressed. The goal is to maximize the sum rate by optimizing link selection for UEs over time. To tackle this challenge, an efficient iterative algorithm is developed. Simulations using a realistic 3D map provide valuable insights into the impact of urban environments on ISTNs and also demonstrates the effectiveness of the proposed algorithm.
Abstract:This work proposes a T-RIS-equipped LEO satellite communication in cognitive radio-enabled integrated NTNs. In the proposed system, a GEO satellite operates as a primary network, and a T-RIS-equipped LEO satellite operates as a secondary IoT network. The objective is to maximize the sum rate of T-RIS-equipped LEO satellite communication using downlink NOMA while ensuring the service quality of GEO cellular users. Our framework simultaneously optimizes the total transmit power of LEO, NOMA power allocation for LEO IoT (LIoT) and T-RIS phase shift design subject to the service quality of LIoT and interference temperature to the primary GEO network. To solve the non-convex sum rate maximization problem, we first adopt successive convex approximations to reduce the complexity of the formulated optimization. Then, we divide the problem into two parts, i.e., power allocation of LEO and phase shift design of T-RIS. The power allocation problem is solved using KKT conditions, while the phase shift problem is handled by Taylor approximation and semidefinite programming. Numerical results are provided to validate the proposed optimization framework.
Abstract:After nearly a century of specialized applications in optics, remote sensing, and acoustics, the near-field (NF) electromagnetic propagation zone is experiencing a resurgence in research interest. This renewed attention is fueled by the emergence of promising applications in various fields such as wireless communications, holography, medical imaging, and quantum-inspired systems. Signal processing within NF sensing and wireless communications environments entails addressing issues related to extended scatterers, range-dependent beampatterns, spherical wavefronts, mutual coupling effects, and the presence of both reactive and radiative fields. Recent investigations have focused on these aspects in the context of extremely large arrays and wide bandwidths, giving rise to novel challenges in channel estimation, beamforming, beam training, sensing, and localization. While NF optics has a longstanding history, advancements in NF phase retrieval techniques and their applications have lately garnered significant research attention. Similarly, utilizing NF localization with acoustic arrays represents a contemporary extension of established principles in NF acoustic array signal processing. This article aims to provide an overview of state-of-the-art signal processing techniques within the NF domain, offering a comprehensive perspective on recent advances in diverse applications.
Abstract:In this paper, optimal linear precoding for the multibeam geostationary earth orbit (GEO) satellite with the multi-user (MU) multiple-input-multiple-output (MIMO) downlink scenario is addressed. Multiple-user interference is one of the major issues faced by the satellites serving the multiple users operating at the common time-frequency resource block in the downlink channel. To mitigate this issue, the optimal linear precoders are implemented at the gateways (GWs). The precoding computation is performed by utilizing the channel state information obtained at user terminals (UTs). The optimal linear precoders are derived considering beamformer update and power control with an iterative per-antenna power optimization algorithm with a limited required number of iterations. The efficacy of the proposed algorithm is validated using the In-Lab experiment for 16X16 precoding with multi-beam satellite for transmitting and receiving the precoded data with digital video broadcasting satellite-second generation extension (DVB- S2X) standard for the GW and the UTs. The software defined radio platforms are employed for emulating the GWs, UTs, and satellite links. The validation is supported by comparing the proposed optimal linear precoder with full frequency reuse (FFR), and minimum mean square error (MMSE) schemes. The experimental results demonstrate that with the optimal linear precoders it is possible to successfully cancel the inter-user interference in the simulated satellite FFR link. Thus, optimal linear precoding brings gains in terms of enhanced signal-to-noise-and-interference ratio, and increased system throughput and spectral efficiency.
Abstract:Stacked intelligent metasurfaces (SIMs) have recently gained significant interest since they enable precoding in the wave domain that comes with increased processing capability and reduced energy consumption. The study of SIMs and high frequency propagation make the study of the performance in the near field of crucial importance. Hence, in this work, we focus on SIM-assisted multiuser multiple-input multiple-output (MIMO) systems operating in the near field region. To this end, we formulate the weighted sum rate maximisation problem in terms of the transmit power and the phase shifts of the SIM. By applying a block coordinate descent (BCD)-relied algorithm, numerical results show the enhanced performance of the SIM in the near field with respect to the far field.