Abstract:This paper examines integrated satellite-terrestrial networks (ISTNs) in urban environments, where terrestrial networks (TNs) and non-terrestrial networks (NTNs) share the same frequency band in the C-band which is considered the promising band for both systems. The dynamic issues in ISTNs, arising from the movement of low Earth orbit satellites (LEOSats) and the mobility of users (UEs), are addressed. The goal is to maximize the sum rate by optimizing link selection for UEs over time. To tackle this challenge, an efficient iterative algorithm is developed. Simulations using a realistic 3D map provide valuable insights into the impact of urban environments on ISTNs and also demonstrates the effectiveness of the proposed algorithm.
Abstract:This paper studies the channel model for the integrated satellite-terrestrial networks operating at C-band under deployment in dense urban and rural areas. Particularly, the interference channel from the low-earth-orbit (LEO) satellite to the dense urban area is analyzed carefully under the impact of the environment's characteristics, i.e., the building density, building height, and the elevation angle. Subsequently, the experimental results show the strong relationships between these characteristics and the channel gain loss. Especially, the functions of channel gain loss are obtained by utilizing the model-fitting approach that can be used as the basis for studying future works of integration of satellite and terrestrial networks (ISTNs).
Abstract:This paper presents a study of an integrated satellite-terrestrial network, where Low-Earth-Orbit (LEO) satellites are used to provide the backhaul link between base stations (BSs) and the core network. The mobility of LEO satellites raises the challenge of determining the optimal association between LEO satellites, BSs, and users (UEs). The goal is to satisfy the UE demand while ensuring load balance and optimizing the capacity of the serving link between the BS and the LEO satellite. To tackle this complex optimization problem, which involves mixed-integer non-convex programming, we propose an iterative algorithm that leverages approximation and relaxation methods. The proposed solution aims to find the optimal two-tier satellite-BS-UE association, sub-channel assignment, power and bandwidth allocation in the shortest possible time, fulfilling the requirements of the integrated satellite-terrestrial network.
Abstract:This paper aims to develop satellite-user association and resource allocation mechanisms to minimize the total transmit power for integrated terrestrial and non-terrestrial networks wherein a constellation of LEO satellites provides the radio access services to both terrestrial base stations (BSs) and the satellite-enabled users (SUEs). In this work, beside maintaining the traditional SatCom connection for SUEs, the LEO satellites provide backhaul links to the BSs to upload the data received from their ground customers. Taking the individual SUE traffic demands and the aggregated BS demands, we formulate a mixed integer programming which consists of the binary variables due to satellite association selection, power control and bandwidth allocation related variables. To cope with this challenging problem, an iterative optimization-based algorithm is proposed by relaxing the binary components and alternating updating all variables. A greedy mechanism is also presented for comparison purpose. Then, numerical results are presented to confirm the effectiveness of our proposed algorithms.
Abstract:This study investigates the integration of an intelligent reflecting surface (IRS) into an unmanned aerial vehicle (UAV) platform to utilize the advantages of these leading technologies for sixth-generation communications, e.g., improved spectral and energy efficiency, extended network coverage, and flexible deployment. In particular, we investigate a downlink IRS-UAV system, wherein single-antenna ground users (UEs) are served by a multi-antenna base station (BS). To assist the communication between UEs and the BS, an IRS mounted on a UAV is deployed, in which the direct links are obstructed owing to the complex urban channel characteristics. The beamforming at the BS, phase shift at the IRS, and the 3D placement of the UAV are jointly optimized to maximize the sum rate. Because the optimization variables, particularly the beamforming and IRS phase shift, are highly coupled with each other, the optimization problem is naturally non-convex. To effectively solve the formulated problem, we propose an iterative algorithm that employs block coordinate descent and inner approximation methods. Numerical results demonstrate the effectiveness of our proposed approach for a UAV-mounted IRS system on the sum rate performance over the state-of-the-art technology using the terrestrial counterpart.