This paper aims to develop satellite-user association and resource allocation mechanisms to minimize the total transmit power for integrated terrestrial and non-terrestrial networks wherein a constellation of LEO satellites provides the radio access services to both terrestrial base stations (BSs) and the satellite-enabled users (SUEs). In this work, beside maintaining the traditional SatCom connection for SUEs, the LEO satellites provide backhaul links to the BSs to upload the data received from their ground customers. Taking the individual SUE traffic demands and the aggregated BS demands, we formulate a mixed integer programming which consists of the binary variables due to satellite association selection, power control and bandwidth allocation related variables. To cope with this challenging problem, an iterative optimization-based algorithm is proposed by relaxing the binary components and alternating updating all variables. A greedy mechanism is also presented for comparison purpose. Then, numerical results are presented to confirm the effectiveness of our proposed algorithms.